Ozone & Oxidants

This page has a list of publications and news articles related to Air Pollution - Ozone and Oxidants. Find more information about our research on Air Pollution.

Research Report 79
James S Ultman
Abdellaziz Ben-Jebria
Craig S MacDougall
Marc L Rigas
1997

Dr. Ultman and his colleagues at Pennsylvania State University redesigned their first-generation analyzer that measures the dose of inhaled ozone to reduce electronic noise (interference) and improve the signal's stability. To do so, they adjusted each parameter that influenced the analyzer's performance: the flow of the air sample into the instrument, the pressure in the chamber where the air sample and the reactant gas mixed, the relative amounts of the reactant gas and air sample, and electronic variables (frequency and voltage).

Research Report 78
John R Balmes
Mark W Frampton
1997

Dr. John Balmes and colleagues of the University of California, San Francisco, and Dr. Mark Frampton and associates of the University of Rochester characterized ozone-induced responses in two different study populations: normal and asthmatic men and women in the Balmes study (Part I), and male and female nonsmokers and smokers in the Frampton study (Part II). The investigators addressed three issues: (1) Is an individual's reactivity to inhaled methacholine related to changes in lung function after exposure to ozone? (2) What is the relation between ozone-induced airway inflammation and changes in lung function? and (3) Do the changes in lung function and markers of inflammation in response to ozone exposure differ between normal people and people with asthma?

Research Report 65-XII
Jack R Harkema
Paul J Catalano
Jon Hotchkiss
1997

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The Health Effects Institute collaborated with the NTP to provide eight HEI-funded investigators access to animals that underwent the same rigorously controlled ozone inhalation protocol and quality assurance processes along with the NTP animals. HEI funded this follow-on study to allow Dr.

Research Report 75
Dana P Loomis
Víctor H Borja-Aburto
Shrikant I Bangdiwala
Carl M Shy
1996

Dr. Loomis and colleagues at the University of North Carolina and Dr. Víctor Borja-Aburto of the Instituto Nacional de Salud Pública in Cuernavaca, Mexico, collected mortality, air quality, and weather data from records and monitoring stations in Mexico City from 1990 through 1992. Using statistical techniques, the investigators evaluated the association between mortality and ambient levels of ozone, sulfur dioxide, and total suspended particles, both individually and in a model that included all three pollutants.

Research Report 71
George D Leikauf
Qiyu Zhao
Shaoying Zhou
Jeffrey Santrock
1995

Dr. Leikauf and colleagues at the University of Cincinnati Medical Center examined the potential of the secondary products produced from the reaction of ozone with the fluids and the cell membrane of airway epithelial cells to cause biochemical effects. The investigators prepared aldehydes and hydroxyhydroperoxides of different carbon chain lengths. They tested these compounds and hydrogen peroxide in cultures of human airway epithelial cells grown from tissue explants.

Research Report 65-VI
Gary A Boorman
Paul J Catalano
Bernard J Jacobson
Debra A Kaden
Paul W Mellick
Kathleen M Nauss
Lousie M Ryan
1995

In 1987, the Health Effects Institute entered into a partnership with the National Toxicology Program (NTP) to evaluate the effects of prolonged ozone exposure on F344/N rats. The NTP studies focused on carcinogenicity, while HEI supported eight studies that addressed the biochemical, functional, and structural endpoints and a biostatistical study that developed a sample allocation design and helped to integrate the research findings.

Research Report 65-XI
Paul J Catalano
Ling-Yi Chang
Jack R Harkema
Debra A Kaden
Jerold A Last
Paul W Mellick
William C Parks
Kent E Pinkerton
Bhandaru Radhakrishnamurthy
Louise M Ryan
John L Szarek
1995

In 1987, the Health Effects Institute entered into a partnership with the National Toxicology Program (NTP) to evaluate the effects of prolonged ozone exposure on F344/N rats. The NTP studies focused on carcinogenicity. HEI funded eight independent research studies, including investigations of lung biochemical constituents, structural and cellular changes, lung function, and nasal structure and function.

Research Report 65-VIII & IX
Ling-Yi Chang
Kent E Pinkerton
1995

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. In this report, two of studies and in the NTP/HEI Collaborative Ozone Project, were conducted to determine whether prolonged inhalation of ozone produces lasting effects on lung structure, potentially contributing to or aggravating chronic lung disease. Drs. Chang and Pinkerton and their respective colleagues investigated the effects of this prolonged ozone exposure on respiratory tract structure in healthy male and female F344/N rats. 

Research Report 65-X
Paul J Catalano
John Rogus
Louise M Ryan
1995

One major component of urban smog is ozone, a highly reactive gas that forms when emissions from mobile and industrial sources react chemically in the presence of sunlight.  One concern is that prolonged ozone exposure could cause noncancerous lung diseases such as fibrosis and emphysema. The NTP's bioassay project presented a unique opportunity for a collaboration between the HEI and the NTP.

Research Report 65-V
Jack R Harkema
Joe L Mauderly
1994

Ozone is the major pollutant in smog. It is formed by complex photochemical reactions between nitrogen oxides and volatile organic compounds in the presence of sunlight. Motor vehicle and industrial emissions are prominent sources of these compounds. Peak atmospheric ozone concentrations generally occur during the summer months because the photochemical reactions that produce ozone are enhanced by sunlight and high temperature.