Ozone & Oxidants

This page has a list of publications and news articles related to Air Pollution - Ozone and Oxidants. Find more information about our research on Air Pollution.

Communication 1
Health Effects Institute
1992

HEI Communications 1 contains abstracts for six feasibility studies that were funded under RFA 89-2: Health Effects of Chronic Ozone Inhalation: Collaborative National Toxicology Program–Health Effects Institute Studies: Pilot Studies.

Research Report 50
David G Thomassen
Jack R Harkema
James D Sun
Nicole D Stephens
William C Griffith
1992

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Dr. David Thomassen and coworkers examined the ability of ozone to alter the structure and growth characteristics of epithelial cells from rat tracheas in ways consistent with precancerous changes.

Research Report 48
Philip A Bromberg
Venkatachalam Ranga
M Jackson Stutts
1991

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Dr. Philip Bromberg and coworkers at the University of North Carolina, Chapel Hill examined whether exposure to ozone alters properties of the airway epithelium.

Research Report 44
Kenneth Donaldson
Geraldine M Brown
David M Brown
Joan Slight
William M Maclaren
John MG Davis
1991

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Drs. Kenneth Donaldson and coworkers at the Institute of Occupational Medicine examined whether exposure to ozone activates white blood cells to release substances that can damage lung tissue.

Research Report 39
James S Ultman
Abdellaziz Ben-Jebria
1991

This report describes a study by Drs. Ultman and Ben-Jebria to develop a chemiluminescent ozone analyzer and constructed an ozone bolus generator with the goal of using bolus concentration-response methods to noninvasively measure the longitudinal distribution of ozone absorption in human lungs. The analyzer was based on the chemiluminescent reaction between 2-methyl-2-butene and ozone. Validation of the system was performed in excised pig and sheep tracheas, and the resulting absorption coefficient was computed.

Research Report 38
Jerold A Last
1991

This report describes a study by Dr. Last to investigate possible synergistic effects of multiple air pollutants on pulmonary measures in rats. Rats were exposed for 1-9 days to mixtures of O3 or NO2 and aerosols of sulfuric acid, ammonium sulfate, or sodium chloride, and to each pollutant individually. Responses were evaluated by various biochemical and morphometric analyses of lung tissue and lavage fluid. An additional preliminary experiment treated exposed rats in vivo with various free-radical scavengers to elucidate possible protective properties.

Research Report 22
Keith A Tanswell
1989

This report addressed the hypothesis that hypertrophy of the lung after oxidant injury with ozone or oxygen is due to local generation of lung-specific growth factors. Dr. Tanswell exposed rats to either 85% oxygen, 1 ppm ozone, or air for up to two weeks while samples of plasma, lung washings, and lung tissue were periodically collected. These samples were tested for their effect on the DNA synthesis of purified populations of three major lung cell types (pneumocyte, fibroblast, and endothelial cell) in culture.

Research Report 14
Jane Koenig
William E Pierson
Susan Gayle Marshall
David S Covert
Michael S Morgan
Gerald van Belle
1988

This report investigated whether asthmatic and healthy adolescents differ in their sensitivity to near-ambient concentrations of ozone and nitrogen dioxide. Dr. Koenig and colleagues exposed healthy and asthmatic participants to concentrations of 0.12 and 0.18 ppm ozone or 0.12 and 0.18 ppm nitrogen dioxide during rest or rest followed by moderate exercise.

Research Report 11
David A Johnson
1987

Addressing the need for better assessment of human exposure to mobile source emissions, this report investigates proteinase inhibitor activity as a potential biomarker of oxidant exposure. In this study by Dr. Johnson, human participants were exposed to 0.5 ppm ozone for four hours on consecutive days and to concentrations ranging from 0.6-2 ppm nitrogen dioxide for three hours. Blood samples were obtained and the functional activity of the proteinase inhibitors, alpha-1-proteinase, and bronchial leukocyte proteinase was assessed.

Research Report 6
Deborah M Drechsler-Parks
1987

Dr. Drechsler-Parks and colleagues at the Institute of Environmental Stress sought to examine the effects of nitrogen dioxide, ozone, and peroxyacetyl nitrate on metabolic and pulmonary function. Because it is possible that two or more pollutants could interact in ambient air and cause effects that could not be predicted from the effects observed with the individual pollutants, the investigators examined varying levels of different pollutants in 32 non-smoking men and women (8 men and 8 women 18-26 years of age and 8 men and 8 women 51-76 years of age).