Research Reports

HEI’s mission is to provide credible science to support environmental regulations and other policy decisions. The results of each HEI-funded project undergo peer-review by outside scientists and the Health Review Committee. The HEI Research Reports contain the Investigator’s Report and the Review Committee’s evaluation of the study, summarized in a Commentary or short Critique.

ISSN 1041-5505 (print)        ISSN 2688-6855 (online) 

Research Report 53
George J Jakab
Terence H Risby
David R Hemenway
1992
Topics: 

Dr. George Jakab and associates the Johns Hopkins University School of Public Health examined the effects of inhaled formaldehyde, an airway irritant that is part of motor vehicle emissions, on alveolar macrophages. The investigators exposed mice to varying levels of formaldehyde alone or to formaldehyde mixed with carbon black particles. Carbon black particles were chosen because of their similarity to combustion derived particles. Different alveolar macrophage functions were evaluated using two assays.

Research Report 52
Bernard R Chaitman
Thomas E Dahms
Sheila Byers
Lisa W Carroll
Liwa T Younis
Robert D Wiens
1992

Drs. Chaitman and coworkers at the St. Louis University School of Medicine examined whether there is a link between carbon monoxide exposure and arrhythmias in subjects with coronary artery disease. Carbon monoxide is a ubiquitous air pollutant. It is found in cigarette smoke and emissions from motor vehicles, industrial processes, and poorly ventilated combustion sources. The investigators studied 25 men and 5 women, aged 45 to 77 years, all of whom were nonsmokers with stable coronary artery disease and who had moderate levels of ventricular arrhythmias.

Research Report 51
Andres JP Klein-Szanto
Hitoshi Ura
Shigeru Momiki
Daniel Bonfil
Samuel Litwin
1992
Topics: 

Dr. Klein-Szanto and colleagues at the Fox Chase Cancer Center employed a novel exposure system to explore the capacity of formaldehyde to cause cancerous changes in human epithelial cells. Formaldehyde is classified as a toxic air pollutant and is emitted in exhaust of motor vehicles, but whether or not formaldehyde is injurious to human health is controversial. The investigators obtained autopsy samples from human infant airways and from adult nasal tissue.

Research Report 50
David G Thomassen
Jack R Harkema
James D Sun
Nicole D Stephens
William C Griffith
1992

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Dr. David Thomassen and coworkers examined the ability of ozone to alter the structure and growth characteristics of epithelial cells from rat tracheas in ways consistent with precancerous changes.

Research Report 49
George D Leikauf
1992
Topics: 

Dr. George Leikauf and coworkers at the University of Cincinnati Medical Center examined the mechanism by which aldehyde inhalation can alter breathing patterns and damage cells lining the airways. Emissions from motor vehicles using gasoline and diesel fuels add to the outdoor levels of aldehydes, including formaldehyde and acrolein, which are known irritants of the respiratory tract. The investigators prposed to examine whether airway constriction due to exposure to aldehydes is caused by damage to airway cells, by the entry of white blood cells into the lungs, or both.

Research Report 48
Philip A Bromberg
Venkatachalam Ranga
M Jackson Stutts
1991

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Dr. Philip Bromberg and coworkers at the University of North Carolina, Chapel Hill examined whether exposure to ozone alters properties of the airway epithelium.

Research Report 47
Jerry K Davis
Maureen Davidson
Trenton R Schoeb
1991

Nitrogen dioxide is an ubiquitous air pollutant resulting from the combustion of fossil fuels. When inhaled at high levels, it reacts with and damages lung cells, including those cells that fight infection. This damage can affect breathing and may increase the risk of respiratory infections. Dr. J.K. Davis and his colleagues at the University of Alabama, Birmingham examined whether exposure to lower levels of nitrogen dioxide (less than 5 ppm) compromises mouse lung defense.

Research Report 46
Frederick A Beland
1991

Nitropyrenes are a class of chemicals found in diesel engine exhaust that can form DNA adducts and are suspected animal carcinogens. Dr. Beland at the University of Arkansas for Medical Sciences examined the relationship between DNA adducts and cancer in laboratory animals treated with 1-nitropyrene, the major nitropyrene present in diesel engine exhaust. The investigator used state-of-the-art techniques to study DNA adducts formed from 1-nitropyrene under different conditions of exposure, with an emphasis on identifying unique adducts that had not been recognized before.

Research Report 45
Michael T Kleinman
William J Mautz
1991

The human health effects that result from breathing air pollutants depend on the amount of pollutant inhaled from the air (exposure dose) and the amount of inhaled material that stays in the respiratory tract (retained dose). Because the retained dose of a pollutant may damage the respiratory tract and cause disease, it is a key factor for determining appropriate government regulations for air pollutants. Drs.

Research Report 44
Kenneth Donaldson
Geraldine M Brown
David M Brown
Joan Slight
William M Maclaren
John MG Davis
1991

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Drs. Kenneth Donaldson and coworkers at the Institute of Occupational Medicine examined whether exposure to ozone activates white blood cells to release substances that can damage lung tissue.