Register For HEI's Annual Conference 2025

Sunday, May 4 - Tuesday, May 6, 2025 at the Austin Marriott Downtown Hotel in Austin, Texas.

Diesel Exhaust

This page has a list of publications and news articles related to Air Pollution - Diesel Exhaust. Find more information about our research on Air Pollution.

Research Report 128
Mark L Witten
Simon S Wong
Nina N Sun
Ingegerd Keith
Chol-Bum Kweon
David E Foster
James J Schauer
Duane L Sherrill
2005

Dr. Witten and colleagues investigated the inflammatory effects of diesel exhaust exposure on rat airways. The investigators focused on the role of neurogenic inflammation, an inflammatory response defined by the release of neuropeptides, such as substance P (SP), from sensory nerve fibers known as C fibers located within the lung tissue. Neurogenic inflammation has been implicated in responses to inhaled irritants such as ozone and cigarette smoke and has been implied to play a role in asthma.

Research Report 112
Stephen T Holgate
Thomas Sandström
et al.
Stephen T Holgate
Robert B Devlin
et al.
2003

Stephen Holgate and his colleagues at the University of Southampton proposed that inflammatory changes in lung fluids and blood from humans exposed to PM were related to the chemical composition of the particles. He obtained samples from two human studies in which participants were exposed to diesel exhaust and concentrated ambient particles (CAPs). At a Swedish laboratory 25 healthy and 12 asthmatic participants were exposed to diesel exhaust or filtered air on separate days. At a US laboratory, 12 healthy participants were exposed to filtered air and 30 different healthy participants were exposed to a range of CAPs concentrations. All participants underwent bronchoscopy to obtain lung tissues and fluids to analyze inflammatory markers, including numbers of specific white blood cells, expression of activation markers, and levels of cytokines in addition to analysis of lung function, lung fluids, and blood.

Communication 10
Health Effects Institute
2003

Communication 10 contains proceedings of a workshop held in Baltimore, MD, December 4–6 2002. The workshop sought to address the search for a "Diesel Signature": Do We Have a Diesel Signature? Where Do We Go From Here? Communication 10 includes a workshop summary and reports from speakers on: Health Studies of Diesel Particulate Matter; Future Trends of Diesel Emissions; Diesel and Gasoline Particle Characteristics; Approaches to Particle Characterization; Diesel Source Signature Studies; Emissions and Air Quality Studies; Data Analysis Approaches.

Special Report
Health Effects Institute
2002

A Special Report of the Institute's Diesel Epidemiology Working Group. The Diesel Epidemiology Working Group was formed in the fall of 2000 to (1) review reports from 6 diesel feasibility studies funded by HEI to provide information on potential study populations and on exposure assessment methods; and (2) consider the results of the feasibility studies and other ongoing research in order to develop a new research agenda to seek better information for quantitative risk assessment of lung cancer and other chronic diseases that may result from exposure to diesel exhaust. The 6 feasibility studies described in this report were funded by HEI to provide insight about whether a new retrospective or prospective epidemiologic study could provide data to improve estimates of cancer risk from exposure to diesel exhaust, and about whether new methods of exposure analysis would allow us to reevaluate older epidemiologic studies.

Communication 9
Health Effects Institute
2001

The fuel efficiency and durability of diesel technology are particularly desirable in the transportation and construction industries. Concerns about the health effects of diesel particulate emissions have led to progressively stricter emission standards, which can be met only through new technologic advances and fuel modifications. The cerium-based fuel additive Eolys, used in conjunction with a particulate filter, is one of the approaches being considered. However, this additive will result in emissions of cerium compounds and an increase in cerium in the ambient air and soil.

Communication 7
Health Effects Institute
1999
Communication 7 contains proceedings from a workshop held in Stone Mountain, GA, March 7–9 1999. The following topics were discussed: Risk Assessments of Diesel Emissions: Framework for Building a Research Strategy; Chemical and Physical Properties of Diesel Engine Emissions; Assessment of Exposure to Diesel Engine Emissions; What Do Published Epidemiology Studies Tell Us About Exposure-Response?; What Will Epidemiology Studies Now Underway Tell Us About Exposure-Response?; What Will Epidemiology Studies Now Underway Tell Us About Exposure-Response?; and Consideration of Health Endpoints Other Than Cancer in Future Risk Assessments of Diesel Emissions.
Special Report
Health Effects Institute
1999

A Special Report of the Institute's Diesel Epidemiology Expert Panel. Although epidemiologic data have been used generally to identify the hazards associated with exposure to diesel exhaust, questions remain as to whether the human data can be used to develop reliable estimates of the magnitude of any risk for lung cancer (that is, through quantitative risk assessment [QRA]), and whether new research efforts could provide any additional data needed. In response to such issues, the Health Effects Institute initiated the Diesel Epidemiology Project in 1998.

Research Report 76
Susan T Bagley
Kirby J Baumgard
Linda D Gratz
John H Johnson
David G Leddy
1996

Dr. Susan Bagley and colleagues at Michigan Technological University conducted a laboratory study to characterize the physical and chemical composition, and the mutagenicity of emissions from a heavy-duty 1988 diesel engine equipped with a ceramic particle trap. This engine was operated with low-sulfur fuel at a constant speed under two different load conditions. They also studied the effects of an oxidation catalytic converter on emissions from a heavy-duty 1991 diesel engine using a low-sulfur fuel.

Research Report 68-III
Steven A Belinsky
Charles E Mitchell
Kristen J Nikula
Deborah S Swafford
1995

In Part III of this study, Dr. Belinsky and his associates at the Lovelace Biomedical and Environmental Research Institute examined lung tumors from rats that had inhaled high concentrations of diesel engine exhaust or carbon black particles (see Part I by Dr. Joe Mauderly). The investigators applied molecular biology techniques to measure mutations in selected genes in the DNA from the tumors.

Research Report 68-II
Kurt Randerath
Kim L Putnam
Joe L Mauderly
Paige L Williams
Erika Randerath
1995

Dr. Randerath's study was part of a large cancer bioassay conducted by Dr. Joe Mauderly and colleagues of the Inhalation Toxicology Research Institute (ITRI). The investigators exposed F344/N rats by inhalation to clean (filtered) air or to one of two concentrations of either diesel exhaust or carbon (2.5 or 6.5 mg of particles/m3 of test atmosphere). Both Dr. Randerath and Dr. Mauderly measured DNA adducts in lung tissue samples from rats exposed at ITRI for different periods of time to the test atmospheres. Dr.

Research Report 72
Frederick A Beland
1995

Dr. Beland and his associates at the University of Arkansas School of Medical Sciences developed an assay to measure mutations induced by dinitropyrenes, a class of diesel engine exhaust, in rats. The investigators analyzed the mutations in a selected gene in spleen T lymphocytes from rats treated with 1,6-dinitropyrene under conditions that induced lung tumors at the highest dose tested. They also examined DNA adduct levels in lung and liver tissues and in spleen lymphocytes and white blood cells.

Special Report
Health Effects Institute
1995

A Special Report of the Institute's Diesel Working Group. Diesel engine emissions have the potential to cause adverse health effects, including cancer and other pulmonary and cardiovascular diseases. However, it is difficult to distinguish the potential health risks attributable to exposure to diesel exhaust from those attributable to other air pollutants. For over a decade, HEI has supported a broad-based research program to evaluate the health risks of diesel emissions, including investigations of carcinogenesis, modeling studies, and emissions characterization. The purpose of this Special Report is to examine what is known, not known, and still uncertain about the health risks of exposure to diesel emissions.

Research Report 68-I
Joe L Mauderly
M Burton Snipes
Edward Barr
Steven A Belinsky
James A Bond
Antone L Brooks
I-Yiin Chang
Yung S Cheng
Nancy A Gillett
William C Griffith
Rogene F Henderson
Charles E Mitchell
Kristen J Nikula
1994

Dr. Mauderly and coworkers exposed F344/N rats to clean air or to one of two levels (2.5 or 6.5 mg of particles/m3 of diesel exhaust or air) of either emissions from a light-duty diesel engine or carbon black particles. The exposures lasted for 16 hours/day, 5 days/week, for 24 months. The carbon black particles were similar to the soot particles in the diesel engine exhaust; however, they contained markedly lower amounts of adsorbed organic compounds.

Research Report 66
Paul C Howard
Frederick A Beland
1994

High doses of inhaled diesel engine exhaust produce lung tumors in laboratory animals and may cause cancer in humans. Nitropyrenes are products of diesel engine exhaust and can be activated by the body\'s metabolism to form highly reactive products that interact with DNA to form DNA adducts. The adducts can interfere with the normal processes of DNA replication and can lead to genetic mutations that may result in carcinogenesis. Dr.

Research Report 64
Karam El-Bayoumy
Bruce E Johnson
Ajit K Roy
Pramod Upadhyaya
Syrus J Partian
1994

Exposure to polycyclic aromatic hydrocarbons (PAHs) and their nitro-substituted derivatives (nitro-PAHs), products of incomplete combustion, is widespread. This is of concern because individual PAHs and PAH-containing mixtures cause tumors in animals and they are suspected to contribute to human cancer. To asses their carcinogenic potential in humans, biomarkers of PAH exposure that measure the internal dose or the effective dose need to be developed. Dr.

Research Report 61
Roger W Giese
Paul Vouros
1993

Both environmental and genetic factors are believed to contribute to the multistage process that results in carcinogenesis. Therefore, determining the health risks associated with exposure to known and suspected carcinogenic chemicals is essential for informed decision-making by regulatory agencies. Dr. Roger W. Giese and colleagues at Northeastern University developed sensitive and specific techniques for measuring polycyclic aromatic hydrocarbon (PAH)-DNA adducts, a class of DNA adducts associated with exposure to constituents of diesel emissions and other combustion products.

Research Report 56
Susan T Bagley
Linda D Gratz
David G Leddy
John H Johnson
1993

Devices have been developed to reduce particle emissions from vehicles with diesel engines, such as a trap that filters the particles from the exhaust. Periodically, the trap is cleaned (regenerated) by electric heating, thereby burning the particles before they can clog the trap. There is concern that potentially harmful chemicals associated with the particles may be emitted from the trap during normal use and regeneration. Dr.

Research Report 55
Veronica M Maher
Nitai P Bhattacharyya
M Chia-Miao Mah
Janet Boldt
Jia-Ling Yang
J Justin McCormick
1993

Nitropyrenes, which form during diesel fuel combustion, cause mutations and are carcinogenic in some animals. Dr. Veronica Maher and colleagues at Michigan State University studied the effect of nitropyrene-DNA adducts on gene mutation. The investigators exposed a specific gene, in culture, to each of two nitropyrene derivatives. They then (1) compared the number of adducts formed by each derivative, (2) analyzed the chemical structure of the adducts, and (3) determined in which region of the DNA the adducts formed.

Research Report 46
Frederick A Beland
1991

Nitropyrenes are a class of chemicals found in diesel engine exhaust that can form DNA adducts and are suspected animal carcinogens. Dr. Beland at the University of Arkansas for Medical Sciences examined the relationship between DNA adducts and cancer in laboratory animals treated with 1-nitropyrene, the major nitropyrene present in diesel engine exhaust. The investigator used state-of-the-art techniques to study DNA adducts formed from 1-nitropyrene under different conditions of exposure, with an emphasis on identifying unique adducts that had not been recognized before.

Research Report 45
Michael T Kleinman
William J Mautz
1991

The human health effects that result from breathing air pollutants depend on the amount of pollutant inhaled from the air (exposure dose) and the amount of inhaled material that stays in the respiratory tract (retained dose). Because the retained dose of a pollutant may damage the respiratory tract and cause disease, it is a key factor for determining appropriate government regulations for air pollutants. Drs.