Publications

This page is a list of publications in reverse chronological order. Please use search or the filters to browse by research areas, publication types, and content types.

Displaying 201 - 300 of 347. Show 10 | 25 | 50 | 100 results per page.


Research Directions to Improve Estimates of Human Exposure and Risk from Diesel Exhaust

Health Effects Institute
2002
Special Report

A Special Report of the Institute's Diesel Epidemiology Working Group. The Diesel Epidemiology Working Group was formed in the fall of 2000 to (1) review reports from 6 diesel feasibility studies funded by HEI to provide information on potential study populations and on exposure assessment methods; and (2) consider the results of the feasibility studies and other ongoing research in order to develop a new research agenda to seek better information for quantitative risk assessment of lung cancer and other chronic diseases that may result from exposure to diesel exhaust. The 6 feasibility studies described in this report were funded by HEI to provide insight about whether a new retrospective or prospective epidemiologic study could provide data to improve estimates of cancer risk from exposure to diesel exhaust, and about whether new methods of exposure analysis would allow us to reevaluate older epidemiologic studies.

Emissions from Diesel and Gasoline Engines Measured in Highway Tunnels

Alan W Gertler
et al.
Daniel Grosjean
et al.
2002
Research Report 107

This report describes two studies that measured emissions in roadway tunnels. Dr. Alan Gertler and colleagues at the Desert Research Institute studied particulate matter emissions in the Tuscarora Mountain Tunnel located on the Pennsylvania Turnpike. Dr Daniel Grosjean and colleague at DGA, Inc studied carbonyl emissions in the Tuscarora Mountain Tunnel and in the Caldecott Tunnel in California. The unique environment in tunnel studies allows the investigators to measure emission rates averaged over many vehicles, to determine the physical and chemical character of emissions under ambient conditions, and in some instances to compare current emissions with past emissions at the same location. Both groups of investigators also measured emissions at times when the proportions of gasoline engine vehicles and diesel engine vehicles differed, allowing them to estimate the differences between emissions from the two sources.

Pathogenomic Mechanisms for Particulate Matter Induction of Acute Lung Injury and Inflammation in Mice

George D Leikauf
Susan A McDowell
Scott C Wesselkamper
Clay R Miller
William D Hardie
Kelly Gammon
Pratim P Biswas
Thomas R Korfhagen
Cindy J Bachurski
Jonathan S Wiest
Klaus Willeke
Eula Bingham
John E Leikauf
Bruce J Aronow
et al.
2001
Research Report 105

Dr. Leikauf and colleagues at the University of Cincinnati Medical Center hypothesized that the response of mice exposed to high concentrations of inhaled nickel particles was under genetic control. Using nickel, a transition element shown to cause adverse effects at high concentrations in ambient air, the investigators sought to identify the genes involved in controlling the inflammatory and toxic effects of continuous exposure to nickel particles.

Effects of Combined Ozone and Air Pollution Particle Exposure in Mice

Lester Kobzik
Carroll-Ann W Goldsmith
Yao Yu Ning
Guozhong Qin
Bill Morgan
Amy Imrich
Joy Lawrence
GG Krishna Murthy
Paul J Catalano
2001
Research Report 106

Dr. Lester Kobzik and colleagues at the Harvard School of Public Health used a mouse model of asthma to evaluate how inhaling pollutants affects the airways. The mice were sensitized to the allergen ovalbumin, which induces a lung condition in the mice similar to that found in people with asthma. The investigators hypothesized that exposure to concentrated ambient particles (CAPs) plus ozone would cause a synergistic (or greater-than-additive) response in the mice.

Inhalation Toxicology of Urban Ambient Particulate Matter: Acute Cardiovascular Effects in Rats

Renaud Vincent
Premkumari Kumarathasan
Patrick Goegan
Stephen G Bjarnason
Josée Guénette
Denis Bérubé
Ian Y Adamson
Suzanne Desjardins
Richard T Burnett
Frederick J Miller
Bruno Battistini
2001
Research Report 104

Dr. Renaud Vincent and his colleagues of Health Canada, Ottawa, hypothesized that ambient PM would cause changes in certain cardiovascular parameters. The investigators implanted rats with radiotransmitters to collect continuous data and indwelling catheters for repeated blood sampling. The animals were exposed to clean air or one of four types of resuspended particles: ambient particles (Ottawa dust), ambient particles that had been washed in water to remove soluble components, diesel soot, or carbon black.

Acute Pulmonary Effects of Ultrafine Particles in Rats and Mice

Günter Oberdörster
Jacob N Finkelstein
Carl Johnston
Robert Gelein
Christopher Cox
Raymond Baggs
Alison CP Elder
2001
Research Report 96

Dr Günter Oberdörster and colleagues at the University of Rochester School of Medicine and Dentistry hypothesized that inhaled ultrafine particles induce an inflammatory response in the airways of mice and rats and that animals with preexisting airway inflammatory conditions may be particularly vulnerable. The investigators focused on inhaled carbon and platinum particles because these elements are constituents of particles found in urban atmospheres.

Evaluation of Human Health Risk from Cerium Added to Diesel Fuel

Health Effects Institute
2001
Communication 9

The fuel efficiency and durability of diesel technology are particularly desirable in the transportation and construction industries. Concerns about the health effects of diesel particulate emissions have led to progressively stricter emission standards, which can be met only through new technologic advances and fuel modifications. The cerium-based fuel additive Eolys, used in conjunction with a particulate filter, is one of the approaches being considered. However, this additive will result in emissions of cerium compounds and an increase in cerium in the ambient air and soil.

Characterization and Mechanisms of Chromosomal Alterations Induced by Benzene in Mice and Humans

David A Eastmond
Maik Schuler
Chris Frantz
Hongwei Chen
Robert Parks
Ling Wang
Leslie Hasegawa
2001
Research Report 103

Dr. Eastmond and colleagures at the University of California, Riverside investigated whether chromosomal changes could be used as biomarkers of benzene exposure in mice and humans. The first part of the study involved detecting chromosomal alterations in cells using a modification of a molecular cytogenetic technique known as fluorescence in situ hybridization (FISH). Eastmond and colleagues evaluated the frequency of such chromosomal aberrations in the erythrocytes (red blood cells) from the bone marrow of mice exposed to various doses of benzene and for different exposure durations.

Airborne Particles and Health: HEI Epidemiologic Evidence

Health Effects Institute
2001
Perspectives 1

Perspectives 1 is the first of a series produced by the HEI Health Review Committee to integrate findings across several HEI studies or entire research programs. The intent is to describe and interpret results bearing on important and timely issues for a broad audience in terested in environmental health.

Metabolism of Ether Oxygenates Added to Gasoline

Jun-Yan Hong
et al.
Wolfgang Dekant
et al.
Janet Benson
et al.
2001
Research Report 102

The three research projects contained in this report were initiated to increase our knowledge of the metabolism of ether oxygenates in humans and other species. Adding oxygenates, such as MTBE (methyl tert-butyl ether), to gasoline promotes more efficient combustion and reduces emission of carbon monoxide, ozone-forming hydrocarbons, and some air toxics, by increasing the oxygen content of the fuel. On the other hand, some oxygenates may increase emission of toxic compounds such as formaldehyde or acetaldehyde, and increased use of MTBE in fuel in the early 1990s led to complaints of unpleasant odor, headaches, and burning of eyes and throat. The studies were conducted by Dr Jun-Yan Hong (the University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School), Dr Wolfgang Dekant (University of Würzburg), and Dr Janet Benson (Lovelace Respiratory Research Institute).

Respiratory Epithelial Penetration and Clearance of Particle-Borne Benzo[a]pyrene

Per Gerde
Bruce A Muggenburg
Margot Lundborg
Yohannes Tesfaigzi
Alan R Dahl
2001
Research Report 101

Dr. Gerde and colleagues at the Lovelace Respiratory Research Institute examined the effects of organic compounds in diesel exhaust such as genotoxic polynuclear aromatic compounds (PAHs). The investigators removed most of the organic compounds from diesel exhaust particles and bound radioactive Benzo[a]pyrene (BaP), a type of PAH is known to cause cancer in laboratory animals, to them. They exposed the lower respiratory tract of three dogs to the particles and measured the levels of particle-bound BaP and free BaP released from particles in the peripheral region of the lungs.

Respiratory Tract Toxicity in Rats Exposed to Mexico City Air

Owen R Moss
Elizabeth A Gross
R Arden James
Derek B Janszen
Paul W Ross
Kay C Roberts
Andrew M Howard
Jack R Harkema
Lilian Calderon-Garciduenas
Kevin T Morgan
2001
Research Report 100

Dr. Moss of CIIT evaluated the effects of rats exposed to ambient air in a highly polluted area in southwestern Mexico City. Pathologists have found evidence of cell damage and inflammation in nasal tissue from some human residents of this highly polluted area that was not present in people living in areas of the country with cleaner air and this study sought to determine if those effects could be replicated in rats.

A Case-Crossover Analysis of Fine Particulate Matter Air Pollution and Out-of-Hospital Sudden Cardiac Arrest

Harvey Checkoway
Drew Levy
Lianne Sheppard
Joel D Kaufman
Jane Koenig
David Siscovick
2000
Research Report 99

Dr Checkoway and colleagues at the University of Washington tested the primary hypothesis that increases in daily fine particle levels were related to increased risk of out-of-hospital sudden cardiac arrest. Sudden cardiac arrest and questionnaire data, and exposure data were obtained from the Puget Sound Clean Air Agency (Seattle WA). The investigators used a case-crossover study design; for each case of sudden cardiac arrest, a time period when the person was disease free was selected as a matched "referent" period.

Health Implications of Technological Responses to Climate Change

The Heinz Center
Health Effects Institute
2000
Workshop Report

Report of a workshop held November 29-30, 2000, sponsored by The H. John Heinz III Center for Science, Economics and the Environment, and the Health Effects Institute. 

Daily Mortality and Fine and Ultrafine Particles in Erfurt, Germany. Part I: Role of Particle Number and Particle Mass

H-Erich Wichmann
Claudia Spix
Thomas Tuch
Gabriele Wölke
Annette Peters
Joachim Heinrich
Wolfgang Kreyling
Joachim Heyder
2000
Research Report 98

Dr H-Erich Wichmann and colleagues at the National Research Center for Environment and Health in Germany prospectively studied the association of daily mortality data with the number and mass concentrations of ultrafine and fine particles in Erfurt, Germany. Concentrations were measured near a road and a time-series approach was used to look at short-term changes in particle concentration and concurrent deaths due to cardiovascular and respiratory causes over a period of 3.5 years.

Identifying Subgroups of the General Population That May Be Susceptible to Short-Term Increases in Particulate Air Pollution: A Time-Series Study in Montreal, Quebec

Mark S Goldberg
John C Bailar III
Richard T Burnett
Jeffrey R. Brook
Robyn Tamblyn
Yvette Bonvalot
Pierre Ernst
Kenneth M Flegel
Ravinder K Singh
Marie-France Valois
2000
Research Report 97

Dr. Mark Goldberg and his colleagues at McGill University conducted a time-series study in Montreal using available data from the Quebec Health Insurance Plan and mortality and air pollution data to better the understanding of the mortality-particulate association. Because of the comprehensive nature of this health insurance database, the investigators were able to link individual deaths in Montreal to medical information up to 5 years before death.

Association of Particulate Matter Components with Daily Mortality and Morbidity in Urban Populations

Morton Lippmann
Kazuhiko Ito
Arthur Nádas
Richard T Burnett
2000
Research Report 95

Dr Morton Lippmann and colleagues at the New York University School of Medicine attempted to identify and characterize components of PM and other air pollution mixtures that were associated with excess daily deaths and elderly hospital admissions in and around the area of Detroit, Michigan. Using publicly available data from 1985-1990 and 1992-1994, the investigators used statistical models to weigh the strength of one pollutant or two pollutants concurrently.

Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality

Health Effects Institute
2000
Special Report

A Special Report of the Institute's Particle Epidemiology Reanalysis Project. The overall objective of this project was to conduct a rigorous and independent assessment of the findings of the Harvard Six Cities and American Cancer Society Studies of air pollution and mortality. This objective was met in two parts. In Part I: Replication and Validation, the Reanalysis Team led by Dr. Daniel Krewski sought to replicate the original studies via a quality assurance audit of a sample of the original data and to validate the original numeric results.

National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and Mortality from Air Pollution in the United States

Jonathan M Samet
Scott L Zeger
Francesca Dominici
Frank Curriero
Ivan Coursac
Douglas W. Dockery
Joel Schwartz
Antonella Zanobetti
2000
Research Report 94-II

The National Morbidity, Mortality, and Air Pollution Study (NMMAPS) was designed to select multiple locations based on the specific criteria of population size and availability of PM10 data from the US Environmental Protection Agency's Aerometric Information Retrieval System (AIRS) database, and to apply the same statistical procedures to all locations. Dr Jonathan Samet and his colleagues Johns Hopkins University conducted a time-series study of mortality effects in large US cities representing various levels of PM10 and gaseous pollutants.

National Morbidity, Mortality, and Air Pollution Study. Part I: Methods and Methodologic Issues

Jonathan M Samet
Francesca Dominici
Scott L Zeger
Joel Schwartz
Douglas W. Dockery
2000
Research Report 94-I

In an effort to address the uncertainties regarding the association between PM and daily mortality, and to determine the effects of other pollutants on this association, HEI funded the National Morbidity, Mortality, and Air Pollution Study (NMMAPS). Dr Jonathan Samet and his colleagues at Johns Hopkins University, in collaboration with investigators at Harvard University, conducted this time-series study in large cities across the US where levels of PM and gaseous pollutants were varied.

Effects of Concentrated Ambient Particles in Rats and Hamsters: An Exploratory Study

Terry Gordon
Christine Nadziejko
Lung Chi Chen
Richard B Schlesinger
2000
Research Report 93

Dr Terry Gordon and colleagues at the New York University School of Medicine conducted an exploratory study to test the effects of exposure to PM derived from New York City air on the rodent cardiopulmonary system. They hypothesized that PM would have greater, possibly fatal, effects in animals with compromised cardiopulmonary function than in normal animals. Gordon and colleagues exposed animals for up to 6 hours to concentrated particles that ranged from approximately 150 to 900 µg/m3.

1,3 Butadiene: Cancer, Mutations, and Adducts

Rogene F Henderson
Leslie Recio
Vernon E Walker
Ian A Blair
James A Swenberg
2000
Research Report 92

As part of the Health Effects Institute's air toxics research program, five independent studies were designed to advance our understanding of the roles of different metabolites in 1,3-butadiene (BD)-induced carcinogenesis and of the differences in sensitivity among species, and to develop methods for identifying and measuring biomarkers. The investigators focused on two BD metabolites (1,2-epoxy-3-butene [BDO] and 1,2,3,4-diepoxybutane [BDO2]) that researchers had suspected may play a role in BD carcinogenesis. The studies were conducted by Dr. Rogene Henderson (Lovelace Respiratory Research Institute), Dr. Leslie Recio (CIIT), Dr. Vernon Walker (New York State Department of Health), Dr. Ian Blair (University of Pennsylvania), and Dr. James Swenberg (University of North Carolina at Chapel Hill).

Mechanisms of Morbidity and Mortality from Exposure to Ambient Air Particles

John J Godleski
Richard L Verrier
Petros Koutrakis
Paul J Catalano
2000
Research Report 91

Dr John Godleski and colleagues at Harvard School of Public Health conducted an exploratory study to test the effects of particulate matter exposure in dogs, which share many features of the human cardiovascular system. The investigators hypothesized that particulate matter might affect the animals' cardiac function, leading to arrhythmia, and might induce inflammatory responses and changes in pulmonary mechanical measurements. Twelve dogs were exposed to concentrated ambient particles (CAPs) that were 30 times their level in ambient Boston air.

Aldehydes (Nonanal and Hexanal) in Rat and Human Bronchoalveolar Lavage Fluid After Ozone Exposure

Mark W Frampton
William A Pryor
Rafael Cueto
Christopher Cox
Paul E Morrow
Mark J Utell
1999
Research Report 90

Dr. Pryor and colleagues at Louisiana State University developed methods for measuring ozone reaction products in in vitro models of lung lining fluids exposed to ozone and in lung fluids from rats exposed to ozone. During the study, Dr. Mark Frampton of the University of Rochester provided Pryor with lung fluids from humans exposed to air or ozone under controlled conditions. Frampton and colleagues exposed exercising smokers and nonsmokers to filtered air or to 0.22 parts per million (ppm) ozone for four hours.

Diesel Workshop: Building a Research Strategy to Improve Risk Assessment

Health Effects Institute
1999
Communication 7
Communication 7 contains proceedings from a workshop held in Stone Mountain, GA, March 7–9 1999. The following topics were discussed: Risk Assessments of Diesel Emissions: Framework for Building a Research Strategy; Chemical and Physical Properties of Diesel Engine Emissions; Assessment of Exposure to Diesel Engine Emissions; What Do Published Epidemiology Studies Tell Us About Exposure-Response?; What Will Epidemiology Studies Now Underway Tell Us About Exposure-Response?; What Will Epidemiology Studies Now Underway Tell Us About Exposure-Response?; and Consideration of Health Endpoints Other Than Cancer in Future Risk Assessments of Diesel Emissions.

The Health Effects of Fine Particles: Key Questions and the 2003 Review

Health Effects Institute
1999
Communication 8
Report of the Joint Meeting of the EC and HEI, held in Brussels, Belgium, January 14–15 1999. The following topics were discussed: What Are People Exposed To and Where Do Particles Come From? What Is Known About the Health Effects of PM? What New Research Results Are Emerging? and Outstanding Questions and Gaps for 2003 and Beyond.

Reproductive and Offspring Developmental Effects Following Maternal Inhalation Exposure to Methanol in Nonhuman Primates

Thomas Burbacher
1999
Research Report 89

In an effort to improve air quality and decrease dependence on petroleum, alternative fuels such as methanol have been considered to substitute for gasoline or diesel fuel. Methanol is also a candidate to provide the hydrogen for fuel cells. Before people are exposed to increased concentrations of methanol, the potential health effects of such exposures require study. Dr. Burbacher and colleagues of the University of Washington studied the effects of long-term exposure to methanol vapors on metabolism and reproduction in adult female monkeys (Macaca fascicularis) and developmental effects in their offspring, who were exposed prenatally to methanol. 

Morphometric Analysis of Alveolar Responses of F344 Rats to Subchronic Inhalation of Nitric Oxide

Robert R Mercer
1999
Research Report 88

In a follow-up study to previous research, Dr. Mercer and colleagues at Duke University exposed three groups of rats continuously for six weeks to 2 or 6 ppm nitric oxide (NO) or to filtered air to learn more about the toxicity of NO so as to compare it with two other important oxidants, ozone and nitrogen dioxide (NO2). At the end of the exposure period he used an electron microscope to measure the number of holes in the alveolar septa and to observe other structural changes, such as in the surface area and the number and type of other abnormalities in the alveolar septa.

Development of Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry Methods for Determination of Urinary Metabolites of Benzene in Humans

Assieh A Melikian
Min Meng
Ray O’Connor
Peifeng Hu
Seth M Thompson
1999
Research Report 87

Dr. Melikian and colleagues at the American Health Foundation developed and validated a novel, practical method for assaying metabolites of benzene in humans methods using a technique known as Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (LC-ESI-MS/MS) to measure benzene metabolites in human urine.

Diesel Emissions and Lung Cancer: Epidemiology and Quantitative Risk Assessment

Health Effects Institute
1999
Special Report

A Special Report of the Institute's Diesel Epidemiology Expert Panel. Although epidemiologic data have been used generally to identify the hazards associated with exposure to diesel exhaust, questions remain as to whether the human data can be used to develop reliable estimates of the magnitude of any risk for lung cancer (that is, through quantitative risk assessment [QRA]), and whether new research efforts could provide any additional data needed. In response to such issues, the Health Effects Institute initiated the Diesel Epidemiology Project in 1998.

Statistical Methods for Epidemiologic Studies of the Health Effects of Air Pollution

William Navidi
Duncan Thomas
Bryan Langholz
Daniel Stram
1999
Research Report 86

Dr. Navidi and colleagues at the University of Southern California discussed the development of three sophisticated statistical methods that would improve the estimates of the health effects of air pollution obtained from epidemiologic studies. First, they took a standard case-crossover design and introduced a bidirectional element where control data were obtained both before and after the health event of interest.

Mechanisms of Response to Ozone Exposure: The Role of Mast Cells in Mice

Steven R Kleeberger
Malinda Longphre
Clarke G Tankersley
1999
Research Report 85

Dr. Kleeberger and colleagues at Johns Hopkins University compared ozone-induced inflammation, epithelial cell injury, and epithelial cell proliferation (a marker of cell injury) in three types of mice: mice with a normal content of mast cells, mutant mice without mast cells, and mutant mice whose mast cells were repleted by a bone marrow transplant from normal mice. Each group of mice was exposed to clean air or to ozone for varying lengths of time.

Evaluation of The Potential Health Effects of the Atmospheric Reaction Products of Polycyclic Aromatic Hydrocarbons

Andrew J Grosovsky
Jennifer C Sasaki
Janet Arey
David Eastmond
Karyn K Parks
Roger Atkinson
1999
Research Report 84

Dr. Arey and colleagues of the University of California, Riverside, examined the genotoxic potential of two PAHs (naphthalene and phenanthrene) that are common air pollutants, and a subset of their atmospheric transformation products. The investigators evaluated the genotoxicity of these compounds using a variety of human cell lines with a range of metabolic capabilities. They examined the ability of these compounds to produce small-scale (damage to genes) and large-scale (damage to chromosomes) genetic damage.

Daily Changes in Oxygen Saturation and Pulse Rate Associated with Particulate Air Pollution and Barometric Pressure

Douglas W. Dockery
C Arden Pope III
Richard E Kanner
G Martin Villegas
Joel Schwartz
1999
Research Report 83

Drs. Douglas Dockery at the Harvard School of Public Health and C. Arden Pope III at Brigham Young University speculated that exposure to PM might lead to a transient drop in blood oxygenation, which might have serious consequences in humans with heart or lung problems. The investigators designed a study to increase the possibility of observing PM effects by testing a potentially at-risk group (the elderly) at a time of year that historically had experienced relatively high levels of PM (the winter).

A Partnership to Examine Emerging Health Effects: EC/HEI Workshop on 1,3-Butadiene

Health Effects Institute
1999
Communication 6
Communication 6 contains proceedings from a workshop held in Brussels, Belgium, June 29–30 1998. Presentations focused on butadiene ambient concentrations, metabolism, mutagenicity, epidemiology, and a panel discussion on Butadiene Risk Assessment in the Regulatory Framework.

Atmospheric Observations: Helping Build the Scientific Basis for Decisions Related to Airborne Particulate Matter

National Oceanic & Atmospheric Administration
Health Effects Institute
1998
Workshop Report

Daniel L. Albritton and Daniel S. Greenbaum, cochairs. Report of the PM Measurements Research Workshop, Chapel Hill NC, July 22 and 23, 1998. Aeronomy Laboratory of the National Oceanic and Atmospheric Administration, Boulder, CO, and Health Effects Institute, Cambridge, MA.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part XIII: A Comparison of Changes in the Tracheobronchial Epithelium and Pulmonary Acinus in Male Rats at 3 and 20 Months

Kent E Pinkerton
Barbara L Weller
Margaret G Ménache
Charles G Plopper
1998
Research Report 65-XIII

Ozone, a common outdoor air pollutant, is a highly reactive gas and a major component of smog. A public health concern is that prolonged exposure to ozone might damage the airways and contribute to the development of noncancerous respiratory diseases. To examine this issue, the Health Effects Institute collaborated with the NTP to provide HEI-funded investigators access to animals that underwent the same rigorously controlled ozone exposure and quality assurance processes along with the animals used for NTP studies. One of the NTP/HEI investigator groups, Dr.

Acute Effects of Ambient Ozone on Asthmatic, Wheezy, and Healthy Children

Edward L Avol
William Navidi
Edward B Rappaport
John M Peters
1998
Research Report 82

Dr. John Peters and colleagues of the University of Southern California School of Medicine compared the lung function, respiratory symptoms, activity levels, and bronchodilator use of 10- to 12-year-old healthy, asthmatic, and wheezy children. They conducted the study in Southern California during mid-spring (when ozone levels were expected to be low) and late summer (when ozone levels were expected to be high).

Methods Development for Epidemiologic Investigations of the Health Effects of Prolonged Ozone Exposure

Ira B Tager
Patrick L Kinney
1998
Research Report 81

Dr. Ira Tager and colleagues at the University of California at Berkeley (UCB), and Dr. Patrick Kinney and colleagues at the School of Public Health, Columbia University objectives were to develop new methods for estimating an individual's past exposure to ozone.

Mechanism of Oxidative Stress from Low Levels of Carbon Monoxide

Stephen R Thom
Harry Ischiropoulos
1997
Research Report 80

Dr. Thom and Dr. Ischiropoulos at the University of Pennsylvania Medical Center examined the effects of low concentrations of carbon monoxide on platelets and cells isolated from blood vessels. The investigators exposed blood platelets (taken from rats) and endothelial cells (isolated from bovine blood vessels) to varying concentrations of carbon monoxide and measured how much nitric oxide was released. To determine if exposure to carbon monoxide causes endothelial cells to produce peroxynitrite, the investigators looked for markers of its presence in the culture medium and in the cells.

Improvement of a Respiratory Ozone Analyzer

James S Ultman
Abdellaziz Ben-Jebria
Craig S MacDougall
Marc L Rigas
1997
Research Report 79

Dr. Ultman and his colleagues at Pennsylvania State University redesigned their first-generation analyzer that measures the dose of inhaled ozone to reduce electronic noise (interference) and improve the signal's stability. To do so, they adjusted each parameter that influenced the analyzer's performance: the flow of the air sample into the instrument, the pressure in the chamber where the air sample and the reactant gas mixed, the relative amounts of the reactant gas and air sample, and electronic variables (frequency and voltage).

Formation and Characterization of Particles: Report of the 1996 HEI Workshop

Health Effects Institute
1997
Communication 5

Communication 5 contains proceedings of a workshop held in Cambridge, MA, December 3–4 1996. Presentations included: Current Understanding of the Health Effects of Particles and the Characteristics That Determine Dose or Effect; Particle Formation in Combustion; The EPA Particle Emissions Testing Procedure; Characterizing Particulate Matter in Motor Vehicle Exhaust; Atmospheric Aerosol Transformation; Generating Particles for Laboratory Studies; and Issues and Research Needs for Particle Characterization.

Pharmacokinetics of Methanol and Formate in Female Cynomolgus Monkeys Exposed to Methanol Vapors

Michele A Medinsky
David C Dorman
James A Bond
Owen R Moss
Derek B Janszen
Jeffrey I Everitt
1997
Research Report 77

Dr. Medinsky and colleagues of the Chemical Industry Institute of Toxicology sought to determine how formate, a metabolite produced when methanol is broken down by the body, is formed and removed in monkeys after they have been exposed to methanol vapors. The investigators exposed female cynomolgus monkeys to environmentally relevant concentrations (10, 45, or 200 parts per million) of methanol vapors and to one high dose (900 ppm) for two hours.

Effects of Ozone on Normal and Potentially Sensitive Human Subjects

John R Balmes
Mark W Frampton
1997
Research Report 78

Dr. John Balmes and colleagues of the University of California, San Francisco, and Dr. Mark Frampton and associates of the University of Rochester characterized ozone-induced responses in two different study populations: normal and asthmatic men and women in the Balmes study (Part I), and male and female nonsmokers and smokers in the Frampton study (Part II). The investigators addressed three issues: (1) Is an individual's reactivity to inhaled methacholine related to changes in lung function after exposure to ozone? (2) What is the relation between ozone-induced airway inflammation and changes in lung function? and (3) Do the changes in lung function and markers of inflammation in response to ozone exposure differ between normal people and people with asthma?

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part XII: Atrophy of Bone in Nasal Turbinates

Jack R Harkema
Paul J Catalano
Jon Hotchkiss
1997
Research Report 65-XII

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The Health Effects Institute collaborated with the NTP to provide eight HEI-funded investigators access to animals that underwent the same rigorously controlled ozone inhalation protocol and quality assurance processes along with the NTP animals. HEI funded this follow-on study to allow Dr.

Particulate Air Pollution and Daily Mortality: The Phase I Report of the Particle Epidemiology Evaluation Project. Phase I.B: Analyses of the Effects of Weather and Multiple Air Pollutants

Health Effects Institute
1997
Special Report

The Phase I.B Report of the Particle Epidemiology Evaluation Project. The Health Effects Institute began the Particle Epidemiology Evaluation Project in 1994 to evaluate the emerging epidemiologic evidence of a relation between particulate air pollution and daily mortality. In Phase I.B, Drs. Jonathan M. Samet and Scott L. Zeger and their colleagues at the Johns Hopkins University School of Hygiene and Public Health (1) compared approaches for controlling the effects of weather variables when analyzing the connection between air pollution and daily mortality, primarily focusing on Synoptic Weather Categories, an approach newly proposed by Dr. Laurence S. Kalkstein of the University of Delaware; and (2) evaluated the association between particulate air pollution and daily mortality in the Philadelphia metropolitan area using statistical models that included data for five pollutants regulated under the Clean Air Act Amendments of 1990 (referred to as criteria pollutants).

Nitrogen Dioxide and Respiratory Illness in Children. Part IV: Effects of Housing and Meteorologic Factors on Indoor Nitrogen Dioxide Concentrations

John Spengler
Margo Schwab
Aidan McDermott
William E Lambert
Jonathan M Samet
1996
Research Report 58-IV

Nitrogen dioxide is a ubiquitous air pollutant resulting from the combustion of fossil fuels. Indoor levels of nitrogen dioxide are often higher than outdoor concentrations, especially in homes where there are unvented heating and cooking appliances that utilize natural gas, kerosene, coal, or wood. Drs. John Spengler, Jonathan Samet, and their colleagues determined the impact of housing characteristics and the type and use of cooking ranges on nitrogen dioxide levels in infants' bedrooms in Albuquerque.

Ozone Exposure and Daily Mortality in Mexico City: A Time-Series Analysis

Dana P Loomis
Víctor H Borja-Aburto
Shrikant I Bangdiwala
Carl M Shy
1996
Research Report 75

Dr. Loomis and colleagues at the University of North Carolina and Dr. Víctor Borja-Aburto of the Instituto Nacional de Salud Pública in Cuernavaca, Mexico, collected mortality, air quality, and weather data from records and monitoring stations in Mexico City from 1990 through 1992. Using statistical techniques, the investigators evaluated the association between mortality and ambient levels of ozone, sulfur dioxide, and total suspended particles, both individually and in a model that included all three pollutants.

Characterization of Fuel and After-Treatment Device Effects on Diesel Emissions

Susan T Bagley
Kirby J Baumgard
Linda D Gratz
John H Johnson
David G Leddy
1996
Research Report 76

Dr. Susan Bagley and colleagues at Michigan Technological University conducted a laboratory study to characterize the physical and chemical composition, and the mutagenicity of emissions from a heavy-duty 1988 diesel engine equipped with a ceramic particle trap. This engine was operated with low-sulfur fuel at a constant speed under two different load conditions. They also studied the effects of an oxidation catalytic converter on emissions from a heavy-duty 1991 diesel engine using a low-sulfur fuel.

Maternal-Fetal Pharmacokinetics of Methanol

Gary M Pollack
Kim LR Brouwer
1996
Research Report 74

Drs. Pollack and Brouwer at the University of North Carolina determined the relationship between methanol exposure and its uptake into and elimination from the blood of nonpregnant and pregnant rodents. The investigators exposed rats and mice at several different stages of gestation to methanol intravenously or orally (doses ranged from 100 mg/kg of body weight to 2,500 mg/kg) or by inhalation (1,000 to 20,000 ppm for 8 hours). They measured blood, urine, and amniotic fluid concentrations of methanol and used the data to develop a model of methanol distribution in rodents.

Developmental Neurotoxicity of Methanol Exposure in Rats

Bernard Weiss
Sander Stern
Sidney C Soderholm
Christopher Cox
Archana Sharma
Geoffrey B Inglis
Ray Preston
Marlene Balys
Kenneth R Reuhl
Robert Gelein
1996
Research Report 73

Dr. Weiss and his colleagues at the University of Rochester School of Medicine and Dentistry examined the effects of prenatal and early postnatal inhalation of methanol on selected measures of neurobehavior in rats. The investigators conducted a controlled series of experiments in which they exposed pregnant rats and their newborn offspring to 4,500 parts per million (ppm) methanol by inhalation, and then submitted them to tests of behavioral function.

The Potential Health Effects of Oxygenates Added to Gasoline. A Review of the Current Literature

Health Effects Institute
1996
Special Report

A Special Report of the Institute's Oxygenates Evaluation Committee. Oxygenated fuel (usually referred to as oxyfuel) was formulated to reduce carbon monoxide emissions and contains at least 2.7% oxygen by adding methyl tert-butyl ether (MTBE) or ethanol. Reformulated gasoline was formulated to help reduce ground-level ozone concentrations and contains at least 2% oxygen, has a reduced content of benzene and other aromatic compounds, and produces limited emissions of total air toxics. The introduction of fuels containing oxygenates elicited concerns from workers and the general public in some areas, including reports of unpleasant odors, headaches, or other symptoms attributed to the fuels, and questions about their effects on the cost of gasoline, the performance of engines, and fuel economy. This Special Report summarizes an intensive review of (1) the existing science of the health effects of oxygenates, (2) the risk evaluations done by the EPA in 1993 and 1994, and (3) in a qualitative way, the health effects of exposure to the new additives as they relate to the health effects of other pollutants whose levels in emissions change when fuels containing oxygenates are used.

Theoretical Approaches to Analyzing Complex Mixtures

Health Effects Institute
1996
Communication 4

Communication 4 contains four reports on analyzing complex mixtures. Three reports address analytical approaches to indentifying toxic compounds. One describes statistical approaches to analysis of interaction. (1) Immunoaffinity Chromatography in the Analysis of Toxic Effects of Complex Mixtures, William E. Bechtold (2) Stationary-Phase Programming for Liquid Chromatography: A New Concept for Separating Complex Mixtures, John G. Dorsey (3) Supercritical Separation and Molecular Bioassay Technologies Applied to Complex Mixtures, David L. Springer (4) Using the Parallel Coordinate Axis System to Analyze Complex Mixtures: Determining Biological Activity and Interactions Among Components, Chris Gennings.

Pulmonary Toxicity of Inhaled Diesel Exhaust and Carbon Black in Chronically Exposed Rats. Part III: Examination of Possible Target Genes

Steven A Belinsky
Charles E Mitchell
Kristen J Nikula
Deborah S Swafford
1995
Research Report 68-III

In Part III of this study, Dr. Belinsky and his associates at the Lovelace Biomedical and Environmental Research Institute examined lung tumors from rats that had inhaled high concentrations of diesel engine exhaust or carbon black particles (see Part I by Dr. Joe Mauderly). The investigators applied molecular biology techniques to measure mutations in selected genes in the DNA from the tumors.

Pulmonary Toxicity of Inhaled Diesel Exhaust and Carbon Black in Chronically Exposed Rats. Part II: DNA Damage

Kurt Randerath
Kim L Putnam
Joe L Mauderly
Paige L Williams
Erika Randerath
1995
Research Report 68-II

Dr. Randerath's study was part of a large cancer bioassay conducted by Dr. Joe Mauderly and colleagues of the Inhalation Toxicology Research Institute (ITRI). The investigators exposed F344/N rats by inhalation to clean (filtered) air or to one of two concentrations of either diesel exhaust or carbon (2.5 or 6.5 mg of particles/m3 of test atmosphere). Both Dr. Randerath and Dr. Mauderly measured DNA adducts in lung tissue samples from rats exposed at ITRI for different periods of time to the test atmospheres. Dr.

DNA Adduct Formation and T-Lymphocyte Mutation Induction in F344 Rats Implanted with Tumorigenic Doses of 1,6-Dinitropyrene

Frederick A Beland
1995
Research Report 72

Dr. Beland and his associates at the University of Arkansas School of Medical Sciences developed an assay to measure mutations induced by dinitropyrenes, a class of diesel engine exhaust, in rats. The investigators analyzed the mutations in a selected gene in spleen T lymphocytes from rats treated with 1,6-dinitropyrene under conditions that induced lung tumors at the highest dose tested. They also examined DNA adduct levels in lung and liver tissues and in spleen lymphocytes and white blood cells.

Activation of Eicosanoid Metabolism in Human Airway Epithelial Cells by Products of Ozonolysis in Membrane Fatty Acids

George D Leikauf
Qiyu Zhao
Shaoying Zhou
Jeffrey Santrock
1995
Research Report 71

Dr. Leikauf and colleagues at the University of Cincinnati Medical Center examined the potential of the secondary products produced from the reaction of ozone with the fluids and the cell membrane of airway epithelial cells to cause biochemical effects. The investigators prepared aldehydes and hydroxyhydroperoxides of different carbon chain lengths. They tested these compounds and hydrogen peroxide in cultures of human airway epithelial cells grown from tissue explants.

Particulate Air Pollution and Daily Mortality: The Phase I Report of the Particle Epidemiology Evaluation Project. Phase I.A: Replication and Validation of Selected Studies

Health Effects Institute
1995
Special Report

The Phase I.A Report of the Particle Epidemiology Evaluation Project. The Health Effects Institute began the Particle Epidemiology Evaluation Project in 1994 to evaluate the emerging epidemiologic evidence of a relation between particulate air pollution and daily mortality. In Phase I.A, Drs. Jonathan M. Samet and Scott L. Zeger and their colleagues at the Johns Hopkins University School of Hygiene and Public Health (1) reconstructed from original sources the data set for Philadelphia used in earlier studies and confirmed previous numerical results from analyzing these data; (2) developed an analytic approach (including new statistical methods) based on the Philadelphia data set; and (3) applied this approach to data sets for six locations: Philadelphia; Utah Valley; St. Louis, MO; Eastern Tennessee; Birmingham, AL; and Santa Clara County, CA.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part VI: Background and Study Design

Gary A Boorman
Paul J Catalano
Bernard J Jacobson
Debra A Kaden
Paul W Mellick
Kathleen M Nauss
Lousie M Ryan
1995
Research Report 65-VI

In 1987, the Health Effects Institute entered into a partnership with the National Toxicology Program (NTP) to evaluate the effects of prolonged ozone exposure on F344/N rats. The NTP studies focused on carcinogenicity, while HEI supported eight studies that addressed the biochemical, functional, and structural endpoints and a biostatistical study that developed a sample allocation design and helped to integrate the research findings.

Diesel Exhaust: Critical Analysis of Emissions, Exposure, and Health Effects

Health Effects Institute
1995
Special Report

A Special Report of the Institute's Diesel Working Group. Diesel engine emissions have the potential to cause adverse health effects, including cancer and other pulmonary and cardiovascular diseases. However, it is difficult to distinguish the potential health risks attributable to exposure to diesel exhaust from those attributable to other air pollutants. For over a decade, HEI has supported a broad-based research program to evaluate the health risks of diesel emissions, including investigations of carcinogenesis, modeling studies, and emissions characterization. The purpose of this Special Report is to examine what is known, not known, and still uncertain about the health risks of exposure to diesel emissions.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part XI: Integrative Summary

Paul J Catalano
Ling-Yi Chang
Jack R Harkema
Debra A Kaden
Jerold A Last
Paul W Mellick
William C Parks
Kent E Pinkerton
Bhandaru Radhakrishnamurthy
Louise M Ryan
John L Szarek
1995
Research Report 65-XI

In 1987, the Health Effects Institute entered into a partnership with the National Toxicology Program (NTP) to evaluate the effects of prolonged ozone exposure on F344/N rats. The NTP studies focused on carcinogenicity. HEI funded eight independent research studies, including investigations of lung biochemical constituents, structural and cellular changes, lung function, and nasal structure and function.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Parts VIII and IX

Ling-Yi Chang
Kent E Pinkerton
1995
Research Report 65-VIII & IX

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. In this report, two of studies and in the NTP/HEI Collaborative Ozone Project, were conducted to determine whether prolonged inhalation of ozone produces lasting effects on lung structure, potentially contributing to or aggravating chronic lung disease. Drs. Chang and Pinkerton and their respective colleagues investigated the effects of this prolonged ozone exposure on respiratory tract structure in healthy male and female F344/N rats. 

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part X: Robust Composite Scores Based on Median Polish Analysis

Paul J Catalano
John Rogus
Louise M Ryan
1995
Research Report 65-X

One major component of urban smog is ozone, a highly reactive gas that forms when emissions from mobile and industrial sources react chemically in the presence of sunlight.  One concern is that prolonged ozone exposure could cause noncancerous lung diseases such as fibrosis and emphysema. The NTP's bioassay project presented a unique opportunity for a collaboration between the HEI and the NTP.

Oxidant and Acid Aerosol Exposure in Healthy Subjects and Subjects with Asthma

Jane Koenig
Mark J Utell
1994
Research Report 70

In two separate studies, Drs. Koenig and Utell examined the effects of exposing healthy subjects and subjects with asthma to combined oxidant and acid pollutants. Each team of investigators conducted studies in which human volunteers received either combined or sequential exposures to oxidant gases and acid aerosols and standard pulmonary function tests were performed and symptoms were recorded. Dr. Koenig and colleagues exposed 28 adolescents with asthma to varying concentrations of ozone, nitrogen dioxide, and sulfuric acid. Dr. Utell and colleagues examined the effects of sequential exposures to sulfuric acid and ozone on pulmonary function in 30 subjects with asthma and 30 healthy subjects between the ages of 18 and 45. 

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part VII: Effects on the Nasal Mucociliary Apparatus

Jack R Harkema
Kevin T Morgan
Elizabeth A Gross
Paul J Catalano
William C Griffith
1994
Research Report 65-VII

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The nose is the first line of defense against inhaled pathogens, dusts, and irritant gases; thus, changes induced by ozone in the normal functions of the nose could result in an increased susceptibility to respiratory infections and other diseases. In one of eight studies in the NTP/HEI Collaborative Ozone Project, Drs.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part V: Effects on Pulmonary Function

Jack R Harkema
Joe L Mauderly
1994
Research Report 65-V

Ozone is the major pollutant in smog. It is formed by complex photochemical reactions between nitrogen oxides and volatile organic compounds in the presence of sunlight. Motor vehicle and industrial emissions are prominent sources of these compounds. Peak atmospheric ozone concentrations generally occur during the summer months because the photochemical reactions that produce ozone are enhanced by sunlight and high temperature.

Pulmonary Toxicity of Inhaled Diesel Exhaust and Carbon Black in Chronically Exposed Rats. Part I: Neoplastic and Nonneoplastic Lung Lesions

Joe L Mauderly
M Burton Snipes
Edward Barr
Steven A Belinsky
James A Bond
Antone L Brooks
I-Yiin Chang
Yung S Cheng
Nancy A Gillett
William C Griffith
Rogene F Henderson
Charles E Mitchell
Kristen J Nikula
1994
Research Report 68-I

Dr. Mauderly and coworkers exposed F344/N rats to clean air or to one of two levels (2.5 or 6.5 mg of particles/m3 of diesel exhaust or air) of either emissions from a light-duty diesel engine or carbon black particles. The exposures lasted for 16 hours/day, 5 days/week, for 24 months. The carbon black particles were similar to the soot particles in the diesel engine exhaust; however, they contained markedly lower amounts of adsorbed organic compounds.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part IV: Effects on Expression of Extracellular Matrix Genes

William C Parks
Jill D Roby
1994
Research Report 65-IV

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. Prolonged ozone exposure may injure respiratory tissue, leading to the development or exacerbation of chronic lung diseases such as fibrosis or emphysema. An excess of connective tissue can lead to fibrosis and changes in connective tissue are believed to be an underlying cause of emphysema. Dr.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part III: Effects on Complex Carbohydrates of Lung Connective Tissue

Bhandaru Radhakrishnamurthy
1994
Research Report 65-XIII

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The study of the effects of long-term ozone exposure on lung complex carbohydrates, described in this report, was one of eight laboratory studies supported by the NTP/HEI collaborative agreement. In addition to studying lung and nasal structure and function, investigators studied other constituents of lung connective tissue. Dr.

Noninvasive Determination of Respiratory Ozone Absorption: The Bolus-Response Method

James S Ultman
Abdellaziz Ben-Jebria
Shu-Chieh Hu
1994
Research Report 69

Dr. James Ultman and colleagues at Pennsylvania State University used a fast-responding ozone measurement system, which they had developed with previous HEI support, to noninvasively measure the absorption of inhaled ozone in different regions of the respiratory tract of healthy adult men. While the subject was breathing through the measurement apparatus, a narrow 10-mL bolus of ozone was introduced into the inhaled air at a predetermined point.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part II: Mechanical Properties, Responses to Bronchoactive Stimuli, and Eicosanoid Release in Isolated Large and Small Airways

John L Szarek
1994
Research Report 65-II

Ozone is a major outdoor air pollutant and short term inhalation can produce temporary chest discomfort, and transient changes in breathing patterns and lung function. Because a large number of people are exposed to levels of ozone sufficient to cause effects on breathing, it is important to understand the short- and long-term consequences of these exposures for human health. Dr.

Nitrogen Dioxide and Respiratory Illness in Children. Part III: Quality Assurance in an Epidemiologic Study

William E Lambert
Jonathan M Samet
Betty J Skipper
Alice H Cushing
William C Hunt
Stephen A Young
Leroy C McLaren
Margo Schwab
John Spengler
1994
Research Report 58-III

This report describes the quality assurance and quality control program developed for the previously reported epidemiologic study of nitrogen dioxide (NO2) and respiratory illness in children (Health Effects Institute Research Report 58, Parts I and II). The specific aims of the program were to make certain that data were sufficiently accurate, complete, verifiable, and retrievable.

Development of Methods for Measuring Biological Markers of Formaldehyde Exposure

Timothy R Fennell
1994
Research Report 67

Dr. Fennell at the Chemical Industry Institute of Toxicology sought to develop new methods for improving the detection of formaldehyde-DNA adducts in exposed cells and tissues. The investigator treated formaldehyde-DNA adducts with sodium bisulfite, a compound that reacts with these adducts and traps them as stable compounds, and then tested different analytical techniques for separating and detecting the adducts. He exposed pure DNA, cell nuclei, and cells in culture to formaldehyde and treated them with sodium bisulfite under a variety of experimental conditions.

The Effects of Copollutants on the Metabolism and DNA Binding of Carcinogens

Paul C Howard
Frederick A Beland
1994
Research Report 66

High doses of inhaled diesel engine exhaust produce lung tumors in laboratory animals and may cause cancer in humans. Nitropyrenes are products of diesel engine exhaust and can be activated by the body\'s metabolism to form highly reactive products that interact with DNA to form DNA adducts. The adducts can interfere with the normal processes of DNA replication and can lead to genetic mutations that may result in carcinogenesis. Dr.

Biomonitoring of Nitropolynuclear Aromatic Hydrocarbons via Protein and DNA Adducts

Karam El-Bayoumy
Bruce E Johnson
Ajit K Roy
Pramod Upadhyaya
Syrus J Partian
1994
Research Report 64

Exposure to polycyclic aromatic hydrocarbons (PAHs) and their nitro-substituted derivatives (nitro-PAHs), products of incomplete combustion, is widespread. This is of concern because individual PAHs and PAH-containing mixtures cause tumors in animals and they are suspected to contribute to human cancer. To asses their carcinogenic potential in humans, biomarkers of PAH exposure that measure the internal dose or the effective dose need to be developed. Dr.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part I: Content and Cross-Linking of Lung Collagen

Jerold A Last
Thomas R Gelzleichter
Jack R Harkema
Susan Hawk
1994
Research Report 65-I

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The study of the effects of long-term ozone exposure on lung collagen, described in this report, was one of eight studies in a Collaborative Project supported by the NTP and the HEI. The others included studies of lung biochemistry, structure, and function, and one study of nasal structure and function. Dr.

Environmental Epidemiology Planning Project

Health Effects Institute
1994
Communication 3

HEI conducted the Environmental Epidemiology Planning Project in order to identify research needs and opportunities in selected areas of environmental epidemiology. Working groups in each selected area prepared documents composed of individually authored papers. The Planning Project documents were originally published in Environmental Health Perspectives (December 1993, Vol. 102).

Development of Samplers for Measuring Human Exposure to Ozone

Jack D Hackney
Petros Koutrakis
Yukio Yanagisawa
1994
Research Report 63

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. Assessing the risk of adverse health effects from such exposures is difficult because only limited data are available on the actual ozone concentrations that people experience. Under the HEI ozone sampler program, three studies were designed to advance the development and testing of personal ozone samplers. The studies were conducted by Dr. Hackney and colleagues at Rancho Los Amigos Medical Center (Part I), Dr. Koutrakis and colleagues at the Harvard School of Public Health (Part II), and Dr. Yanagisawa from the Harvard School of Public Health (Part III). 

Effects of Carbon Monoxide on Isolated Heart Muscle Cells

Beatrice A Wittenberg
Jonathan B Wittenberg
1993
Research Report 62

Human exposure to carbon monoxide can occur from automobile emissions, industrial processes, sidestream or mainstream cigarette smoke, and poorly ventilated appliances such as space heaters and gas stoves. Most researchers consider the major mechanism for the toxicity of carbon monoxide to be its ability to compete with oxygen for binding to hemoglobin, the protein that transports oxygen through the bloodstream and releases it to cells and tissues.

Methods Development Toward the Measurement of Polyaromatic Hydrocarbon–DNA Adducts by Mass Spectrometry

Roger W Giese
Paul Vouros
1993
Research Report 61

Both environmental and genetic factors are believed to contribute to the multistage process that results in carcinogenesis. Therefore, determining the health risks associated with exposure to known and suspected carcinogenic chemicals is essential for informed decision-making by regulatory agencies. Dr. Roger W. Giese and colleagues at Northeastern University developed sensitive and specific techniques for measuring polycyclic aromatic hydrocarbon (PAH)-DNA adducts, a class of DNA adducts associated with exposure to constituents of diesel emissions and other combustion products.

Failure of Ozone and Nitrogen Dioxide to Enhance Lung Tumor Development in Hamsters

Hanspeter Witschi
Michael A Breider
Hildegard M Schuller
1993
Research Report 60

Ozone and nitrogen dioxide are highly reactive oxidant gases that are derived from the combustion of fossil fuels and the atmospheric transformation of these combustion products. A major unanswered question is whether or not exposure to oxidant air pollutants contributes to lung cancer. Dr. Witschi and colleagues at the University of California at Davis examined whether exposure to ozone or nitrogen dioxide enhances the development of tumors induced by the chemical carcinogen diethylnitrosamine (DEN), particularly neuroendocrine tumors, in the respiratory tract of hamsters.

Characterization of Particle- and Vapor-Phase Organic Fraction Emissions of a Heavy-Duty Diesel Engine Equipped with a Particle Trap and Regeneration Controls

Susan T Bagley
Linda D Gratz
David G Leddy
John H Johnson
1993
Research Report 56

Devices have been developed to reduce particle emissions from vehicles with diesel engines, such as a trap that filters the particles from the exhaust. Periodically, the trap is cleaned (regenerated) by electric heating, thereby burning the particles before they can clog the trap. There is concern that potentially harmful chemicals associated with the particles may be emitted from the trap during normal use and regeneration. Dr.

Research Priorities for Mobile Air Toxics

Health Effects Institute
1993
Communication 2

Communication 2 provides information to decision makers on research that is potentially capable of narrowing uncertainties related to the health effects of specific air toxics. This report is based on the Mobile Air Toxics Workshop held in Monterey, CA, December 4–6 1992.

Do Electric or Magnetic Fields Cause Adverse Health Effects?

Health Effects Institute
1993
Special Report

HEI's Research Plan to Narrow the Uncertainties. This report of the HEI Electric and Magnetic Fields (EMF) Research Planning Committee presents a 5-7 year research program intended to clarify whether or not there are adverse health effects from exposure of the public to EMF from electric power transmission, machinery, or household appliances.

Nitrogen Dioxide and Respiratory Illness in Children, Part I: Health Outcomes, and Part II: Assessment of Exposure to Nitrogen Dioxide

Jonathan M Samet
William E Lambert
1993
Research Report 58-I & II

This publications contains two reports by Drs. Jonathan M. Samet, John D. Spengler, and colleagues, who conducted a prospective investigation of 1,205 healthy infants living in homes with gas or electric stoves in Albuquerque, NM. Nitrogen dioxide exposures were carefully estimated from repeated measurements in multiple locations in the subjects' homes throughout the entire 18-month observation period. Respiratory illnesses were monitored prospectively using a surveillance system based on daily parental diaries of respiratory signs and symptoms. Parental reports of illness episodes were validated in a subset of the population by comparison with clinical diagnoses and microbiological testing. Potential confounding factors that influence respiratory infections were reduced by selecting subjects whose parents did not smoke or intend to use day-care services outside the home.

Determination of the Atherogenic Potential of Inhaled Carbon Monoxide

Arthur Penn
1993
Research Report 57

Carbon monoxide is a ubiquitous air pollutant. It is found in cigarette smoke and emissions from motor vehicles, industrial processes, and poorly ventilated combustion sources. Dr. Penn and his colleagues at New York University Medical Center sought to determine whether chronic exposure to ambient levels of carbon monoxide is also a risk factor for developing atherosclerosis because this disease is the leading contributor to deaths by heart attack and stroke in the United States.

Noninvasive Methods for Measuring Ventilation in Mobile Subjects

J Dennis McCool
Jonathan M Samet
1993
Research Report 59

This document contains two reports by Drs. McCool and Samet and their colleagues who were funded to develop and test methods for measuring ventilation in freely mobile subjects at home or at work. Drs. Dennis McCool and Domyung Paek at the Memorial Hospital in Rhode Island measured ventilation with a body surface displacement (BSD) model. Each subject wore wide elastic bands containing coated wire coils around the chest and abdomen and had special magnets affixed to the breastbone and navel, which yielded data about their breathing patterns, breath frequency, and ventilation. In the second study, Dr. Jonathan Samet and colleagues at Johns Hopkins University wanted to develop methods for estimating ventilation from heart rate for future epidemiologic studies. They used the Heartwatch, a portable, commercial device combining a small transmitter worn on the subject's chest with a wristwatch-style receiver that records heart rate.

Mutations Induced by 1-Nitrosopyrene and Related Compounds During DNA Recombination by These Compounds

Veronica M Maher
Nitai P Bhattacharyya
M Chia-Miao Mah
Janet Boldt
Jia-Ling Yang
J Justin McCormick
1993
Research Report 55

Nitropyrenes, which form during diesel fuel combustion, cause mutations and are carcinogenic in some animals. Dr. Veronica Maher and colleagues at Michigan State University studied the effect of nitropyrene-DNA adducts on gene mutation. The investigators exposed a specific gene, in culture, to each of two nitropyrene derivatives. They then (1) compared the number of adducts formed by each derivative, (2) analyzed the chemical structure of the adducts, and (3) determined in which region of the DNA the adducts formed.

Oxidant Injury to the Alveolar Epithelium: Biochemical and Pharmacologic Studies

Bruce A Freeman
Peter C Panus
Sadis Matalon
Barbara J. Buckley
R Randall Baker
1993
Research Report 54

Ozone and nitrogen dioxide are significant outdoor and indoor air pollutants that can cause lung damage. Both are termed oxidant gases because the oxygen atoms they contain react with a variety of lung components and produce injury. Dr. Bruce Freeman and colleagues at the University of Alabama, Birmingham examined oxidant injury to alveolar epithelial cells and tested whether supplementing the levels of antioxidants would modify the cells' resistance to damage.

Use of Physical Chemistry and in Vivo Exposure to Investigate the Toxicity of Formaldehyde Bound to Carbonaceous Particles in the Murine Lung

George J Jakab
Terence H Risby
David R Hemenway
1992
Research Report 53

Dr. George Jakab and associates the Johns Hopkins University School of Public Health examined the effects of inhaled formaldehyde, an airway irritant that is part of motor vehicle emissions, on alveolar macrophages. The investigators exposed mice to varying levels of formaldehyde alone or to formaldehyde mixed with carbon black particles. Carbon black particles were chosen because of their similarity to combustion derived particles. Different alveolar macrophage functions were evaluated using two assays.

Carbon Monoxide Exposure of Subjects with Documented Cardiac Arrhythmias

Bernard R Chaitman
Thomas E Dahms
Sheila Byers
Lisa W Carroll
Liwa T Younis
Robert D Wiens
1992
Research Report 52

Drs. Chaitman and coworkers at the St. Louis University School of Medicine examined whether there is a link between carbon monoxide exposure and arrhythmias in subjects with coronary artery disease. Carbon monoxide is a ubiquitous air pollutant. It is found in cigarette smoke and emissions from motor vehicles, industrial processes, and poorly ventilated combustion sources. The investigators studied 25 men and 5 women, aged 45 to 77 years, all of whom were nonsmokers with stable coronary artery disease and who had moderate levels of ventricular arrhythmias.

Effects of Formaldehyde on Xenotransplanted Human Respiratory Epithelium

Andres JP Klein-Szanto
Hitoshi Ura
Shigeru Momiki
Daniel Bonfil
Samuel Litwin
1992
Research Report 51

Dr. Klein-Szanto and colleagues at the Fox Chase Cancer Center employed a novel exposure system to explore the capacity of formaldehyde to cause cancerous changes in human epithelial cells. Formaldehyde is classified as a toxic air pollutant and is emitted in exhaust of motor vehicles, but whether or not formaldehyde is injurious to human health is controversial. The investigators obtained autopsy samples from human infant airways and from adult nasal tissue.

New Methods in Ozone Toxicology: Abstracts of Six Pilot Studies

Health Effects Institute
1992
Communication 1

HEI Communications 1 contains abstracts for six feasibility studies that were funded under RFA 89-2: Health Effects of Chronic Ozone Inhalation: Collaborative National Toxicology Program–Health Effects Institute Studies: Pilot Studies.

The Role of Ozone in Tracheal Cell Transformation

David G Thomassen
Jack R Harkema
James D Sun
Nicole D Stephens
William C Griffith
1992
Research Report 50

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Dr. David Thomassen and coworkers examined the ability of ozone to alter the structure and growth characteristics of epithelial cells from rat tracheas in ways consistent with precancerous changes.

Mechanisms of Aldehyde-Induced Bronchial Reactivity: Role of Airway Epithelium

George D Leikauf
1992
Research Report 49

Dr. George Leikauf and coworkers at the University of Cincinnati Medical Center examined the mechanism by which aldehyde inhalation can alter breathing patterns and damage cells lining the airways. Emissions from motor vehicles using gasoline and diesel fuels add to the outdoor levels of aldehydes, including formaldehyde and acrolein, which are known irritants of the respiratory tract. The investigators prposed to examine whether airway constriction due to exposure to aldehydes is caused by damage to airway cells, by the entry of white blood cells into the lungs, or both.

Effects of Ozone Exposure on Airway Epithelial Permeability and Ion Transport

Philip A Bromberg
Venkatachalam Ranga
M Jackson Stutts
1991
Research Report 48

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Dr. Philip Bromberg and coworkers at the University of North Carolina, Chapel Hill examined whether exposure to ozone alters properties of the airway epithelium.

Murine Respiratory Mycoplasmosis: A Model to Study Effects of Oxidants

Jerry K Davis
Maureen Davidson
Trenton R Schoeb
1991
Research Report 47

Nitrogen dioxide is an ubiquitous air pollutant resulting from the combustion of fossil fuels. When inhaled at high levels, it reacts with and damages lung cells, including those cells that fight infection. This damage can affect breathing and may increase the risk of respiratory infections. Dr. J.K. Davis and his colleagues at the University of Alabama, Birmingham examined whether exposure to lower levels of nitrogen dioxide (less than 5 ppm) compromises mouse lung defense.

Role of Ring Oxidation in the Metabolic Activation of 1-Nitropyrene

Frederick A Beland
1991
Research Report 46

Nitropyrenes are a class of chemicals found in diesel engine exhaust that can form DNA adducts and are suspected animal carcinogens. Dr. Beland at the University of Arkansas for Medical Sciences examined the relationship between DNA adducts and cancer in laboratory animals treated with 1-nitropyrene, the major nitropyrene present in diesel engine exhaust. The investigator used state-of-the-art techniques to study DNA adducts formed from 1-nitropyrene under different conditions of exposure, with an emphasis on identifying unique adducts that had not been recognized before.

The Effects of Exercise on Dose and Dose Distribution of Inhaled Automotive Pollutants

Michael T Kleinman
William J Mautz
1991
Research Report 45

The human health effects that result from breathing air pollutants depend on the amount of pollutant inhaled from the air (exposure dose) and the amount of inhaled material that stays in the respiratory tract (retained dose). Because the retained dose of a pollutant may damage the respiratory tract and cause disease, it is a key factor for determining appropriate government regulations for air pollutants. Drs.

Leukocyte-Mediated Epithelial Injury in Ozone-Exposed Rat Lung

Kenneth Donaldson
Geraldine M Brown
David M Brown
Joan Slight
William M Maclaren
John MG Davis
1991
Research Report 44

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. When inhaled, ozone can cause cough, shortness of breath, and transient changes in breathing patterns; however the health significance of these effects is unknown. Drs. Kenneth Donaldson and coworkers at the Institute of Occupational Medicine examined whether exposure to ozone activates white blood cells to release substances that can damage lung tissue.