

APPENDICES AVAILABLE ON REQUEST

Research Report 115

Validation and Evaluation of Biomarkers in Workers Exposed to Benzene in China

Appendix B. Additional Statistical Analyses

Qingshan Qu, Roy Shore, Guilan Li, Ximei Jin, Lung Chi Chen, Beverly Cohen, Assieh A Melikian, David Eastmond, Stephen Rappaport, Heyi Li, Doppalapudi Rupa, Suramya Waidyanatha, Songnian Yin, Huifang Yan, Min Meng, Witold Winnik, Eric SC Kwok, Yuying Li, Ruidong Mu, Bohong Xu, Xiaoling Zhang, and Keqi Li

Correspondence may be addressed to Dr Qingshan Qu, Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo NY 10987.

Although this document was produced with partial funding by the United States Environmental Protection Agency under Assistance Award R82811201 to the Health Effects Institute, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred. The contents of this document also have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.

> This document was reviewed by the HEI Health Review Committee but did not undergo the HEI scientific editing and production process.

> > Copyright © 2003 Health Effects Institute, Boston MA

Table B.1. Benzene Exposure-Response Regression Analyses of Blood Counts by Benzene Exposure Level (4-week Average), With and Without Adjustment for Sex, Age, Toluene and Cotinine Levels ^{D, E}

Variable	Benzene Regress. Coeff. ± S.E., Unadjusted, All Subjects	Benzene Regress. Coeff. ± S.E., Adjusted, All Subjects	
Red blood cells $(x10^{10}/L)$	-1.01 ± .37 ^B	60 ± .31 ^A	
Hematocrit	061 ± .055	062 ± .054	
Platelets (x10 ⁹ /L)	164 ± .80	47 ± .92	
White blood cells $(x10^6/L)$	-33.4 ± 8.5 [°]	-32.6 ± 8.8 [°]	
Lymphocytes (x10 ⁶ /L)	-7.8 ± 4.5	-9.0 ± 4.6 ^A	
Neutrophils $(x10^6/L)$	-23.6 ± 6.5 ^C	-21.6 ± 6.6 ^C	
Monocytes, $log(x10^{6}/L)$	005 ± .003	006 ± .003 ^A	
Eosinophils, $log(x10^{6}/L)$	005 ± .007	002 ± .007	
Basophils, $log(x10^6/L)$	003 ± .009	006 ± .009	
Bands $()$	025 ±.021	023 ± .022	
Atypical lymphocytes $(\sqrt{)}$	$004 \pm .002$ ^A	$004 \pm .002$ ^A	

^A $p \le 0.05$, test for exposure-response trend ^B $p \le 0.01$, test for exposure-response trend ^C $p \le 0.001$, test for exposure-response trend

the logarithms of cotinine and toluene were used in the analysis. D

the controls were included in the analysis and were randomly assigned values between 0 and 0.01 ppm which was the Е approximate the lowest detection limit

Table B.2.	Regression Analyses of Blood Counts by "Lifetime" Cumulative Benzene Exposure
	Level, With or Without Adjusting for Sex, Age, Cotinine and Toluene Levels ^D

Variable	Benzene Regress. Coeff. ± S.E., Unadjusted	Benzene Regress. Coeff. ± S.E., Adjusted
Red blood cells $(x10^{10}/L)$	191 ± .053 ^C	$123 \pm .045$ ^B
Hematocrit	$.0009 \pm .009$	$.017 \pm .009$
Platelets (x10 ⁹ /L)	.255 ± .126 ^A	$.342 \pm .148$ ^A
White blood cells $(x10^6/L)$	-4.70 ± 1.26 ^C	-4.49 ± 1.30 ^C
Lymphocytes $(x10^6/L)$	-1.19 ± .67 ^A	-1.16 ± .67 ^A
Neutrophils $(x10^6/L)$	$-3.02 \pm .96$ ^C	-2.83 ± .98 ^B
Monocytes, $log(x10^{6}/L)$	$002 \pm .0005$ ^C	$002 \pm .0005$ ^C
Eosinophils, log(x10 ⁶ /L)	003 ± .001 ^B	$003 \pm .001$ ^A
Basophils, $log(x10^6/L)$	0006 ± .001	0008 ± .001
Bands $()$.003 ± .003	.004 ± .003
Atypical lymphocytes ($$)	$0005 \pm .0003$	0005 ± .0003

^A $p \le 0.05$, test for exposure-response trend ^B $p \le 0.01$, test for exposure-response trend ^C $p \le 0.001$, test for exposure-response trend ^D the controls were included in the analysis and were randomly assigned value of 0

Table B.3. Regression Analyses of Blood Cell Counts by Benzene Exposure Duration and Intensity when Both	
were Included in the Model, Adjusting for Sex, Age, Cotinine and Toluene Levels $^{ m B}$	

Variable	Exposure Duration, Regress. Coeff. \pm S.E. (p-value) ^A	Exposure intensity, Regress. Coeff. ± S.E. (p-value) ^A
Red blood cells $(x10^{10}/L)$	-5.4 ± 3.8	-10.1 ± 3.4 (.001)
White blood cells $(x10^6/L)$	-165 ± 111	-365 ± 98 (.0001)
Lymphocytes $(x10^6/L)$	32 ± 58	-120 ± 51 (.01)
Neutrophils $(x10^6/L)$	-182 ± 84 (.02)	-209 ± 74 (.002)
Monocytes, $log(x10^6/L)$	$04 \pm .04$	10±.04 (.006)
Eosinophils, $log(x10^6/L)$	10 ± .09	17 ± .08 (.02)

A P-values ≤ 0.1 were shown

B Controls were included in the analyses and were assigned zero values for exposure duration and intensity

	Exposed group ^a	Unexposed group
S-PMA	53	115
t,t-MA	23	80
HQ	18	42
CAT	25	37
BT	24	26
Phenol	28	37

Table B.4Coefficients of variation (%) for measurements in exposed
workers over time, and in unexposed subjects

a: Geometric mean of within-subject coefficients of variation after adjust (by ANCOVA) for variations in benzene levels across three weeks

	R I (after work)	RI (After – Before)	
HQ	0.24	0.48 0.06	
CAT	0.24	0.54 0.04	
BT	0.23	0.31	
S-PMA	0.43 0.08	0.85 0.003	
t,t-MA	0.22	0.67 ^{0.01}	

Table B.5 Intraclass correlations (RI) for measures of benzene metabolites

Variable	Linear Term: Coeff. ± Std. Error (p-value)	Quadratic Term: Coeff. \pm Std. Error (p-value) ^A	
t,t-MA (log mg/g cr.), pre-work	.053 ± .008 (<.0001)	052 ± .015 (.0006)	
t,t-MA (log mg/g cr.), post-work	.103 ± .011 (<.0001)	119±.020 (<.0001)	
t,t-MA (log mg/g cr.), post – pre	.051 ± .010 (<.0001)	067 ± .018 (.0002)	
S-PMA (log μ g/g cr.), pre-work	.128 ± .024 (<.0001)	156 ± .043 (.0004)	
S-PMA (log µg/g cr.), post-work	.206 ± .022 (<.0001)	242 ± .040 (<.0001)	
S-PMA (log µg/g cr.), post – pre	.078 ± .016 (<.0001)	086 ± .029 (.004)	
Phenol (log mg/g cr.), pre-work	.118±.022 (<.0001)	183 ± .040 (<.0001)	
Phenol (log mg/g cr.), post-work	.130 ± .022 (<.0001)	124 ± .038 (.002)	
Phenol (mg/g cr.), post – pre	.299 ± .714 (.68)	3.95 ± 1.29 (.003)	

Table B.6. Linear-Quadratic Model:	Shape of the Exposure-Response Curve
------------------------------------	--------------------------------------

^A Quadratic coefficient was based on [(benzene exposure in ppm)/10]². All analyses controlled for age, sex, cotinine and toluene.

Final Report: Projects of HEI-96-5 and HEI-99-9 Appendix B

Table B.7. Mean Scores and Standar	rd Deviations	on FISH Assays	and Number of C	hromosome
Breaks According to 5-Week Benzene Exposure Groups				

Variable	Unexposed, Mean \pm S.D. (N=25)	Total exposed, Mean \pm S.D. (N=25)	>0 to <30 ppm, Mean ± S.D. (N=11)	\geq 30 ppm, Mean \pm S.D. (N=14)
Granulocytes, Chrom. 7, # with 0 hybridizatns	.10 ± .29	.08 ± .28	.18 ± .40	0
Granulocytes, Chrom. 7, # with 1 hybridizatn	27.2 ± 5.9	24.9 ± 5.6	25.5 ± 5.0	24.5 ± 6.2
Granulocytes, Chrom. 7, # with 3 hybridizatns	.30 ± .46	.18±.38	.05 ± .15	.29 ± .47
Granulocytes, Chrom. 7, # with 4 hybridizatns	.04 ± .20	.12 ± .44	0	.21 ± .58
Granulocytes, Chrom. 7, # hypodiploids	27.3 ± 5.9	25.0 ± 5.6	25.7 ± 4.8	24.5 ± 6.2
Granulocytes, Chrom. 7, # hyperdiploids	.34 ± .47	.30±.54	.05 ± .15	.50±.65
Granulocytes, Chrom. 1 (Interphase Tandem), # with 0 hybridizations	10.3 ± 4.6	13.0 ± 8.4	13.3 ± 7.1	12.8 ± 9.6
Granulocytes, Chrom. 1 (Interphase Tandem), # with 1 hybridization	33.8 ± 5.3	29.6 ± 9.1	28.5 ± 10.2	30.5 : 8.5
Granulocytes, Chrom. 1 (Interphase Tandem), # with 3 hybridizations	.67 ± .63	.52 ± .66	.55 ± .69	.50 ± .66
Granulocytes, Chrom. 1 (Interphase Tandem), # with 4 hybridizations	.08 ± .28	0	0	0
Granulocytes, Chrom. 1 (Interphase Tandem), # hypodiploids	44.1 ± 8.7	42.6 ± 10.4	41.7 ± 12.4	43.3 ± 9.1
Granulocytes, Chrom. 1 (Interphase Tandem), # hyperdiploids	.75 ± .60	.52 ± .66	.55 ± .69	.50 ± .66
G0 Lymphocytes, Chrom. 7, # with 0 hybridizations	.08 ± .28	.16 ± .47	.36 ± .67	0
G0 Lymphocytes, Chrom. 7, # with 1 hybridization	56.9 ± 9.9	57.6 ± 11.0	58.8 ± 9.9	56.8 ± 12.1
G0 Lymphocytes, Chrom. 7, # with 3 hybridizations	.10 ± .41	.32 ± .79	.32±.90	.32±.72
G0 Lymphocytes, Chrom. 7, # with 4 hybridizations	.10 ± .29	.20 ± .48	.05±.15	.32±.61
G0 Lymphocytes, Chrom. 7, # hypodiploids	57.0 ± 9.9	57.8 ± 11.0	59.1 ± 10.0	56.8 ± 12.1
G0 Lymphocytes, Chrom. 7, #	.20 ± .48	.52 ± .87	.36±.92	$.64 \pm .84$

Final Report: Projects of HEI-96-5 and HEI-99-9

Appendix B

hyperdiploids				
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # with 0 hybridizations	16.3 ± 6.8	17.9 ± 9.5	15.3 ± 6.2	20.0 ± 11.3
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # with 1 hybridization	43.1 ± 7.0	38.0 ± 8.4	37.8 ± 6.9	38.1 ± 9.7
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # with 3 hybridizations	.28 ± .55	.75 ± .84	.64 ± .81	.83 ± .87
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # with 4 hybridizations	.06 ± .22	.04 ± .20	0	.07 ± .27
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # hypodiploids ($$)	59.4 ± 10.4	55.9 ± 11.8	53.1 ± 11.8	58.1 ± 11.7
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # hyperdiploids ($$)	.34 ± .59	.78 ± .91	.63 ± .81	.89 ± 1.00
48h Cultured Lymphocytes, Chrom. 1, # with 0 hybridizations	14.0 ± 8.7	13.8 ± 8.2	14.5 ± 8.2	13.3 ± 8.4
48h Cultured Lymphocytes, Chrom. 1, # with 1 hybridization	29.4 ± 7.0	29.8 ± 7.9	29.0 ± 8.0	30.4 ± 8.0
48h Cultured Lymphocytes, Chrom. 1, # with 3 hybridizations	.24 ± .44	.04 ± .20	.09 ± .30	0
48h Cultured Lymphocytes, Chrom. 1, # with 4 hybridizations	.04 ± .20	.08 ± .28	.09 ± .30	.07 ± .27
48h Cultured Lymphocytes, Chrom. 1, # hypodiploids	43.4 ± 12.4	43.6 ± 11.2	43.5 ± 12.3	43.7 ± 10.8
48h Cultured Lymphocytes, Chrom. 1, # hyperdiploids	.28 ± .54	.12±.33	.18 ± .40	.07 ± .27
72h Cultured Lymphocytes, Chrom. 7, # with 0 hybridizations	.76±.78	.62±.73	.91 ± .83	.39±.56
72h Cultured Lymphocytes, Chrom. 7, # with 1 hybridization	39.7 ± 9.4	37.6 ± 8.4	36.1 ± 5.1	38.8 ± 10.3
72h Cultured Lymphocytes, Chrom. 7, # with 3 hybridizations	1.6 ± 1.3	1.4 ± 1.2	1.4 ± 1.4	1.4 ± 1.0
72h Cultured Lymphocytes, Chrom. 7, # with 4 hybridizations	.30±.48	.46 ± .87	.09 ± .30	.75 ± 1.05
72h Cultured Lymphocytes, Chrom. 7, # hypodiploids	40.4 ± 9.7	38.3 ± 8.4	37.0 ± 5.3	39.2 ± 10.3
72h Cultured Lymphocytes, Chrom. 7, # hyperdiploids	1.9 ± 1.5	1.9 ± 1.6	1.5 ± 1.4	2.2 ± 1.7
Granulocytes, Chrom. 1 (Interphase Tandem), Total # breaks	9.1 ± 2.5	8.5 ± 2.7	8.2 ± 3.1	8.7 ± 2.5

Final Report: Projects of HEI-96-5 and HEI-99-9

Appendix B

G0 Lymphocytes, Chrom. 1 (Interphase Tandem), Total # breaks	7.2 ± 1.9	6.3 ± 2.9	6.2 ± 2.9	6.4 ± 3.0
48h Cultured Lymphocytes, Chrom. 1, Total # breaks	6.2 ± 2.8	4.8 ± 2.4	4.4 ± 1.3	5.1 ± 3.0

Final Report: Projects of HEI-96-5 and HEI-99-9 Appendix B

Table B.8Means and Standard Deviations of Cytogenetic FISH Variables (raw values,
untransformed) According to Lifetime Cumulative Exposure Groups (ppm-
years)

Variable (transformation)	Unexposed (N=25)	>0 to <150 ppm-yrs (N=14)	\geq 150 ppm-yrs (N=11) ^B
Granulocytes, Chrom. 7, # with 0 hybridizatns	.10 ± .29	.07 ± .27	.09 ± .30
Granulocytes, Chrom. 7, # with 1 hybridizatn	27.2 ± 5.9	24.9 ± 6.5	25.0 ± 4.5
Granulocytes, Chrom. 7, # with 3 hybridizatns	.30 ± .46	.18 ± .37	.18 ± .40
Granulocytes, Chrom. 7, # with 4 hybridizatns	.04 ± .20	0	.27 ± .65
Granulocytes, Chrom. 7, # hypodiploids	27.3 ± 5.9	25.0 ± 6.5	25.1 ± 4.4
Granulocytes, Chrom. 7, # hyperdiploids	.34 ± .47	.18 ± .37	.45 ± .69
Granulocytes, Chrom. 1 (Interphase Tandem), # with 0 hybridizations	10.3 ± 4.6	12.9 ± 6.0	13.2 ± 11.1
Granulocytes, Chrom. 1 (Interphase Tandem), # with 1 hybridization	33.8±5.3	30.6 ± 8.2	28.3 ± 10.4
Granulocytes, Chrom. 1 (Interphase Tandem), # with 3 hybridizations	.67 ± .63	.58 ± .76	.46 ± .53
Granulocytes, Chrom. 1 (Interphase Tandem), # with 4 hybridizations	.08 ± .28	0	0
Granulocytes, Chrom. 1 (Interphase Tandem), # hypodiploids	44.1 ± 8.7	43.5 ± 8.6	41.5 ± 12.8
Granulocytes, Chrom. 1 (Interphase Tandem), # hyperdiploids	.75 ± .60	.58 ± .76	.46 ± .53
G0 Lymphocytes, Chrom. 7, # with 0 hybridizations	.08 ± .28	.29 ± .61	0
G0 Lymphocytes, Chrom. 7, # with 1 hybridization	56.9 ± 9.9	58.9 ± 11.2	56.1 ± 11.0
G0 Lymphocytes, Chrom. 7, # with 3 hybridizations	.10 ± .41	.21 ± .54	.45 ± 1.04
G0 Lymphocytes, Chrom. 7, # with 4 hybridizations	.10 ± .29	.14 ± .31	.27 ± .65
G0 Lymphocytes, Chrom. 7, # hypodiploids	57.0 ± 9.9	59.1 ± 11.3	56.1 ± 11.0
G0 Lymphocytes, Chrom. 7, # hyperdiploids	.20 ± .48	.36±.63	.73 ± 1.10
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # with 0 hybridizations	16.3 ± 6.8	16.5 ± 4.6	19.7 ± 13.5
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # with 1 hybridization	$4\overline{3.1 \pm 7.0}$	$3\overline{8.7 \pm 5.9}$	37.0±11.1

Final Report: Projects of HEI-96-5 and HEI-99-9

Appendix B

G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # with 3 hybridizations	.28 ± .55	.68 ± .83	.82 ± .88
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # with 4 hybridizations	.06 ± .22	.07 ± .27	0
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # hypodiploids ($$)	59.4 ± 10.4	55.2 ± 8.8	56.8 ± 15.2
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), # hyperdiploids ($$)	.34 ± .59	.75 ± .98	.82 ± .87
48h Cultured Lymphocytes, Chrom. 1, # with 0 hybridizations	14.0 ± 8.7	13.5 ± 7.8	14.2 ± 8.9
48h Cultured Lymphocytes, Chrom. 1, # with 1 hybridization	29.4 ± 7.0	32.3 ± 8.4	26.7 ± 6.2
48h Cultured Lymphocytes, Chrom. 1, # with 3 hybridizations	.24 ± .44	.07 ± .27	0
48h Cultured Lymphocytes, Chrom. 1, # with 4 hybridizations	$.04 \pm .20$.07 ± .27	.09 ± .30
48h Cultured Lymphocytes, Chrom. 1, # hypodiploids	43.4 ± 12.4	45.8 ± 9.9	40.9 ± 12.6
48h Cultured Lymphocytes, Chrom. 1, # hyperdiploids	.28 ± .54	.14 ± .36	.09 ± .30
72h Cultured Lymphocytes, Chrom. 7, # with 0 hybridizations	.76 ± .78	.82 ± .82	.36±.50
72h Cultured Lymphocytes, Chrom. 7, # with 1 hybridization	39.7 ± 9.4	39.0 ± 10.3	35.9 ± 4.9
72h Cultured Lymphocytes, Chrom. 7, # with 3 hybridizations	1.6 ± 1.3	1.2 ± 1.0	1.6 ± 1.4
72h Cultured Lymphocytes, Chrom. 7, # with 4 hybridizations	.30 ± .48	.18 ± .54	.82 ± 1.08
72h Cultured Lymphocytes, Chrom. 7, # hypodiploids	40.4 ± 9.7	39.8 ± 10.2	36.3 ± 5.2
72h Cultured Lymphocytes, Chrom. 7, # hyperdiploids	1.9 ± 1.5	1.4 ± 1.2	2.5 ± 1.9
Granulocytes, Chrom. 1 (Interphase Tandem), Total # breaks	9.1 ± 2.5	8.2 ± 2.7	8.8 ± 2.9
G0 Lymphocytes, Chrom. 1 (Interphase Tandem), Total # breaks	7.2 ± 1.9	6.8 ± 2.9	5.7 ± 2.9
48h Cultured Lymphocytes, Chrom. 1, Total # breaks	6.2 ± 2.8	5.0 ± 1.7	4.6± 3.1

^D Values are per 1,000 cells. Note: the hyperdiploidy values for chromosomes 1 and 7 were statistically significant when transformed and analyzed.

Table B.9Fluorescence in situ hybridization studies on interphase cells:
Summary results of positive and negative control slides.

Unstimulated Go lymphocyte studies: Tandem probes chromosome 1 ^a							
Treatment	<u>N</u>	Hypodiploidy 1	Hyperdiploidy 1	1012 Breakage			
0 Gy	7	42 (16.3)	0.9 (1.2)	5.3 (1.1)			
2 Gy	7	59 (12.4)	1.3 (1.0)	13.4 (2.0)			
Granulocyte s	tudies: Ta	andem probes chro	mosome <u>1</u> a				
Treatment	<u>N</u>	<u>Hypodiploidy 1</u>	<u>Hyperdiploidy 1</u>	<u>1q12 Breakage</u>			
0 Gy	5	48 (12.0)	0.2 (0.5)	6.2 (1.6)			
2 Gy	7	56 (7.5)	1.3 (1.0)	12.4 (1.3)			
48 hr cultured	lymphoc	yte studies: Tander	m probes chromosor	<u>ne 1</u> a			
Treatment	<u>N</u>	<u>Hypodiploidy 1</u>	<u>Hyperdiploidy 1</u>	<u>1q12 Breakage</u>			
0 Control	7	39.6 (11.9)	0.6 (0.8)	3.1 (1.1)			
2 Gy	6	39.0 (8.2)	3.0 (2.3)	13.2 (2.3)			
10 µM DES	5	41.8 (13.8)	58.4 (3.3)	5.8 (3.3)			
72 hr cultured	lymphoc	yte studies: Chrom	losome 7 probe ^a				
Treatment	<u>N</u>	<u>Hypodiploidy 7</u>	Hyperdiploidy 7				
0 μM DES	6	36.8 (8.2)	1.5 (1.1)				
10 µM DES	6	66.3 (7.0)	62.0 (9.7)				

^aFrequency per 1000 interphase cells

Table B.10Cytogenetic analyses of Giemsa-stained metaphase
lymphocytes: Summary results of positive and negative
control slides.

Phase 1/year 1 analyses: 51 hr cultured metaphase lymphocyte studies ^b							
Treatment	<u>N</u>	<u>Hypodiploidy</u> ^c	<u>Hyperdiploidy</u> d	<u>SCA</u> e			
0 Control	6	3.4 (1.5)	0 (0)	1.7 (1.6)			
2 Gy	6	5.8 (2.7)	1.5 (1.5)	11.7 (6.9)			

Phase 2/	year 2 ar	nalyses:	51	hr cultured	metar	ohase l	lymp	hoc	yte studies	_s b
		•			-		• •			

Treatment	<u>N</u>	<u>Hypodiploidy</u> c	<u>Hyperdiploidy</u> d	<u>SCA</u> e
0 Control	13	3.0 (1.5)	0 (0)	1.6 (0.9)
2 Gy	13	6.1 (2.1)	1.2 (1.1)	11.5 (3.4)

bFrequency per 100 metaphase cells

^cHypodiploidy for all chromosomes

dHyperdiploidy for all chromosomes

eTotal structural chromosome aberrations excluding gaps

Table B.11.Aneuploidy of Chromosome 1 and Breakage Affecting the 1cen-1q12 Region Detected Using the Tandem FISH Assay in Cultured Lymphocytes from a Subset of the Benzene-Exposed Workers Participating in Phase 2 of the Study

Benzene	_	Нурор	loidy ^a	Hyper	ploidy ^b	Brea	aks
(ppm)		Mean	SD	Mean	SD	Mean	SD
Unexposed	(n = 10)	28.6	16.0	0.3	0.5	3.3	1.5
Exposed ≤ 1	(n = 10)	34.0	10.2	0.7	0.5	5.4	2.1
Exposed ≤ 5	(n = 11)	25.0	13.8	1.2	1.5	5.9 °	2.4
Exposed > 5.1	(n = 9)	21.1	8.1	1.9 ^d	1.3	7.3 ^d	2.7

^a All values are reported as aberrant cells per 1000 cells scored.

^b Includes polyploid cells.

^c Significantly different from unexposed group (*P*<0.05).

^d Significantly different from unexposed group (P<0.01).

Table B.12Benzene Regression Coefficients in the Low-Toluene and High-Toluene Groups (Benzene-Exposed Group only)

Variable	Toluene Interaction (<u>Lo</u> w/ <u>High</u> with greater effect); Interaction p-value ^A	<u>Low Toluene Group</u> , Benzene Regression Coeff. \pm S.E. ^{A,B}	High Toluene Grp, Benzene Regress. Coeff. ± S.E. ^{A,B}
Phenol (mg/g cr.), post - pre	(Low); 0.03	$2.60 \pm .42$.677 ± .405
Red blood cells $(x10^{10}/L)$	(Low); 0.03	.256 ± .356	-1.67 ± .85
Monocytes, $log(x10^{6}/L)$	(High); 0.008	010 ± .004	$.014 \pm .007$
Chromatid gaps $()$	(Low); 0.01	$.013 \pm .004$	$007 \pm .006$
Benzene oxide adducts, log(nmol/g)	(High); 0.01	$.011 \pm .001$	$.020 \pm .003$