
 
 
 

HEI Research Report 217, Appendices A and B — Available on the HEI Website  

 
 

SUPPLEMENTARY APPENDICES  
 
 
 
 

Research Report 217 
 

Long-Term Exposure to Outdoor Ultrafine Particles and Black Carbon 
and Effects on Mortality in Montreal and Toronto, Canada 

 
Scott Weichenthal et al. 

 
Appendix A: Supplementary Tables A.1–A.16 and Figures A.1–A.59 

Appendix B: Monitoring and Backcasting Details 
 
 
 
 

________________________________________________________________________________________________________ 
The Appendices were reviewed for spelling, grammar, and cross-references to the main report. They have not been 
formatted or fully edited by HEI. This document was reviewed by the HEI Improved Exposure Assessment Studies 
Review Panel. 
 
Correspondence may be addressed to Dr. Scott Weichenthal, Department of Epidemiology, Biostatistics, and 
Occupational Health, McGill University, 1110 Pins Avenue West, Montreal, Quebec, Canada, H3A 1A2; email: 
scott.weichenthal@mcgill.ca. 

 
Although this document was produced with partial funding by the United States Environmental Protection Agency 
under Assistance Award CR–83998101 to the Health Effects Institute, it has not been subjected to the Agency’s peer 
and administrative review and, therefore, may not necessarily reflect the views of the Agency; no official 
endorsement by it should be inferred. The contents of this document have not been reviewed by private party 
institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or 
policies of these parties; no endorsement by them should be inferred. 
 

© 2024 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110 

mailto:scott.weichenthal@mcgill.ca


1 
 

CONTENTS 
APPENDIX A: Supplementary Tables A.1–A.16 and Figures A.1–A.59 .................................................... 5 

APPENDIX A TABLES ........................................................................................................................... 5 
Table A.1. Study Area Characteristics .................................................................................................. 5 
Table A.2. Fixed-Site Monitoring Results ............................................................................................ 5 
Table A.3. Instrument Limits of Detection ........................................................................................... 5 
Table A.4. Locations Used for Hourly Ambient Weather Conditions .................................................. 6 
Table A.5. Land Use and Traffic Parameters Examined for LUR Model Development ...................... 6 
Table A.6. Comparison of Descriptive Statistics for Road Segments Visited Various Number of 
Times During Monitoring Campaign .................................................................................................... 7 
Table A.7. Comparison of Land Use and Traffic Parameters for Road Segments Visited Various 
Number of Times During Monitoring Campaign ................................................................................. 7 
Table A.8. Model RMSE in Test Set .................................................................................................... 8 
Table A.9. Pearson Correlation Between LUR and CNN Model Predictions in Test Set .................... 8 
Table A.10. Comparison of Model Performance When Trained on City-Specific Data versus Multi-
city Data ................................................................................................................................................ 8 
Table A.11. Comparison of LUR Model Performance with and without Temporal Adjustment ......... 9 
Table A.12. Comparison of CNN Model Performance with and without Temporal Adjustment in 
Validation Set ........................................................................................................................................ 9 
Table A.13. Median Difference Between LUR and CNN Predicted Values in Test Set .................... 10 
Table A.14. Median Difference Between LUR and CNN Predicted Values in Test Set for Road 
Segments When Observed Aggregated UFP Number Concentration Was Greater than 45,000 
particles/cm3 ........................................................................................................................................ 10 
Table A.15. Slope and Intercept of Predictions versus Observed Values in Test Set ......................... 11 
Table A.16. Hazard Ratios for Interquartile Increases in Ox Exposures and Mortality ...................... 11 

APPENDIX A FIGURES ....................................................................................................................... 12 
Figure A.1. Mobile monitoring routes in Montreal (A) and Toronto (B). .......................................... 12 
Figure A.2. Maps of the training, validation, and test sets in Toronto and Montreal. ........................ 12 
Figure A.3. Directed acyclic graphs for the relationships between outdoor UFP number 
concentrations (A) and black carbon (B) and mortality. ..................................................................... 13 
Figure A.4. Spatial coverage of the Montreal UFP number concentrations monitoring data when 
restricting the minimum number of visits per road segment. .............................................................. 14 
Figure A.5. Spatial coverage of the Toronto UFP number monitoring data when restricting the 
minimum number of visits per road segment. ..................................................................................... 15 
Figure A.6. Spearman’s correlations between land use and traffic parameters included in the 
Montreal LUR for UFP number concentrations.................................................................................. 16 
Figure A.7. Spearman’s correlations between land use and traffic parameters included in the 
Montreal LUR model for UFP size. .................................................................................................... 17 



2 
 

Figure A.8. Spearman’s correlations between land use and traffic parameters included in the 
Montreal LUR for BC. ........................................................................................................................ 18 
Figure A.9. Spearman’s correlations between land use and traffic parameters included in the Toronto 
LUR for UFP number concentrations. ................................................................................................ 19 
Figure A.10. Spearman’s correlations between land use and traffic parameters included in the 
Toronto LUR model for UFP size. ...................................................................................................... 20 
Figure A.11. Spearman’s correlations between land use and traffic parameters included in the 
Toronto LUR for BC. .......................................................................................................................... 21 
Figure A.12. Maps of spatial variation in median meteorological conditions during monitoring for 
Montreal (A: temperature; B: relative humidity; C: wind speed) and Toronto (i: temperature; ii: 
relative humidity; iii: wind speed). ..................................................................................................... 22 
Figure A.13. Relationships between meteorological variables and changes in pollutant levels in each 
of the Montreal LUR models. ............................................................................................................. 23 
Figure A.14. Relationships between meteorological variables and changes in pollutant levels in each 
of the Toronto LUR models. ............................................................................................................... 24 
Figure A.15. Comparing test set LUR mean UFP size predictions to CNN predictions in Montreal 
and Toronto (A) with a histogram of observed values for reference (B). ........................................... 25 
Figure A.16. Comparing test set LUR BC predictions to CNN predictions in Montreal and Toronto 
(A) with a histogram of observed values for reference (B). ............................................................... 26 
Figure A.17. Comparing LUR and CNN predictions of UFP number concentrations from the city-
specific model and the multi-city models. .......................................................................................... 27 
Figure A.18. Comparing UFP number concentrations model predictions from the city-specific 
models to the multi-city models. ......................................................................................................... 28 
Figure A.19. Observed UFP number concentrations over 40,000 particles/cm3 in Toronto are all 
situated on highways. .......................................................................................................................... 29 
Figure A.20. Observed UFP number concentrations over 40,000 particles/cm3 in Montreal are all 
situated on highways. .......................................................................................................................... 29 
Figure A.21. Visualizing intermediate activations of filters of the Conv2D layer in the CNN models 
trained on Toronto data and trained on Montreal and Toronto data. .................................................. 30 
Figure A.22. Scatter plots of observed and predicted UFP number concentrations in the test set. .... 31 
Figure A.23. Scatter plots of observed and predicted mean UFP size in the test set. ......................... 32 
Figure A.24. Scatter plots of observed and predicted BC in the test set. ............................................ 33 
Figure A.25. Identifying the clusters of Toronto LUR UFP number concentration predictions in the 
test set.................................................................................................................................................. 34 
Figure A.26. Inspecting the Toronto LUR UFP number concentration prediction clusters in the test, 
train and validate sets. ......................................................................................................................... 34 
Figure A.27. Identifying the locations of the LUR UFP number concentration prediction clusters. .. 35 
Figure A.28. Inspecting distributions of land use and traffic parameters stratified by LUR UFP 
number concentration prediction cluster. ............................................................................................ 36 
Figure A.29. Average daily traffic NOx response curves in the Toronto BC and UFP number 
concentration LUR models. ................................................................................................................ 37 



3 
 

Figure A.30. Spatial distribution of UFP number concentrations model errors (scaled) in all data for 
the LUR, CNN, and combined models in Toronto and Montreal. ...................................................... 38 
Figure A.31. Spatial distribution of UFP size model errors (scaled) in all data for the LUR, CNN, 
and combined models in Toronto and Montreal. ................................................................................ 39 
Figure A.32. Spatial distribution of BC model errors (scaled) in all data for the LUR, CNN, and 
combined models in Toronto and Montreal. ....................................................................................... 40 
Figure A.33. Surfaces of scaled differences between predicted UFP number concentrations from 
LUR and CNN models in Toronto and Montreal. ............................................................................... 41 
Figure A.34. Surfaces of scaled differences between predicted UFP size from LUR and CNN models 
in Toronto and Montreal. .................................................................................................................... 41 
Figure A.35. Surfaces of scaled differences between predicted BC concentrations from LUR and 
CNN models in Toronto and Montreal. .............................................................................................. 42 
Figure A.36. Sensitivity analysis for UFP number concentrations prediction surfaces from LUR 
models trained without latitude and longitude for Toronto and Montreal. ......................................... 42 
Figure A.37. Sensitivity analysis for UFP size prediction surfaces from LUR models trained without 
latitude and longitude for Toronto and Montreal. ............................................................................... 43 
Figure A.38. Sensitivity analysis for BC prediction surfaces from LUR models trained without 
latitude and longitude for Toronto and Montreal. ............................................................................... 43 
Figure A.39. CNN predictions for UFP number concentrations in Montreal for original and modified 
images. ................................................................................................................................................ 44 
Figure A.40. CNN predictions for BC in Montreal for original and modified images. ...................... 45 
Figure A.41. CNN predictions for UFP number concentrations in Toronto for original and modified 
images. ................................................................................................................................................ 46 
Figure A.42. CNN predictions for BC in Toronto for original and modified images. ........................ 47 
Figure A.43. Changes in CNN predictions for UFP number concentrations when using images of 
Sunnybrook Park in Toronto downloaded in December 2021 versus July 2022. ............................... 48 
Figure A.44. Changes in CNN predictions for BC when using images of Sunnybrook Park in 
Toronto downloaded in December 2021 versus July 2022. ................................................................ 49 
Figure A.45. Mobility-weighted combined models for UFP number concentrations in Toronto and 
Montreal using neighborhood-level survey data from various years. ................................................. 50 
Figure A.46. Mobility-weighted combined models for UFP size in Toronto and Montreal using 
neighborhood-level survey data from various years. .......................................................................... 51 
Figure A.47. Mobility-weighted combined models for BC in Toronto and Montreal using 
neighborhood-level survey data from various years. .......................................................................... 52 
Figure A.48. Change in Toronto combined model UFP number concentrations predictions after 
applying 2006 and 2016 mobility weights. ......................................................................................... 53 
Figure A.49. Change in Toronto combined model BC concentration predictions after applying 2006 
and 2016 mobility weights. ................................................................................................................. 53 
Figure A.50. Change in Montreal combined model UFP number concentration predictions after 
applying 2003 and 2018 mobility weights. ......................................................................................... 54 
Figure A.51. Change in Montreal combined model BC predictions after applying 2003 and 2018 
mobility weights. ................................................................................................................................. 54 



4 
 

Figure A.52. Toronto combined model UFP number concentrations surfaces backcasted to various 
years. ................................................................................................................................................... 55 
Figure A.53. Toronto combined model UFP size surfaces backcasted to various years. ................... 56 
Figure A.54. Toronto combined model BC surfaces backcasted to various years. ............................. 57 
Figure A.55. Montreal combined model UFP number concentration surfaces backcasted to various 
years. ................................................................................................................................................... 58 
Figure A.56. Montreal combined model UFP size surfaces backcasted to various years. .................. 59 
Figure A.57. Montreal combined model BC surfaces backcasted to various years. ........................... 60 
Figure A.58. Concentration-response curves of outdoor BC and mortality outcomes. ...................... 61 
Figure A.59. Concentration-response curves for outdoor UFP number concentrations, UFP size, and 
mortality outcomes for the LUR and CNN models separately. .......................................................... 62 

APPENDIX B: MONITORING AND BACKCASTING DETAILS ......................................................... 63 
1. MONITORING LESSONS LEARNED ............................................................................................. 63 
2. ROUTE SELECTION FOR MOBILE MONITORING ..................................................................... 65 
3. QUALITY CONTROL PROCEDURES FOR DATA COLLECTION ............................................. 66 
4. HISTORIC TRAFFIC DATA ............................................................................................................. 68 
5. FIXED-SITE MONITORING ............................................................................................................ 71 

REFERENCES ........................................................................................................................................... 72 
ABBREVIATIONS AND OTHER TERMS .............................................................................................. 72 
 

  



5 
 

APPENDIX A: Supplementary Tables A.1–A.16 and 
Figures A.1–A.59 
APPENDIX A TABLES 
 
Table A.1. Study Area Characteristics 

Study 
Area 

Population Area Maximum 
Elevation 

January/July 
Mean Low/High 

Mean Annual 
Precipitation 

Mean Relative 
Humidity 

Montreal 1.9 million 472 km2 233 m −14°C/+26°C 1,000 mm  60% 
Toronto 2.9 million 630 km2 209 m −7°C/+27°C 831 mm 61% 

 
 
Table A.2. Fixed-Site Monitoring Results 

City and Pollutant n Mean (SD) Percentile 
5th  50th  95th  

Montreala      
UFP number 

(particles/cm3) 
18 5,391 (899) 4,358 5,442 6,609 

UFP size (nm) 18 49.6 (6.4) 39.9 50 57.5 
NO2 (ppb) 64 3.0 (1.3) 1.2 2.8 7.9 

O3 (ppb) 68 34.3 (3.4) 29.9 33.9 41.5 
      
Toronto      

UFP number 
(particles/cm3) 

21 4,887 (1,602) 2,626 4,705 7,099 

UFP size (nm) 21 49.0 (5.3) 38.3 50.8 55.8 
BC (ng/m3) 53 3662 (1015) 2,069 3,532 5,579 
NO2 (ppb) 57 6.7 (2.4) 3.5 6.3 10.5 

O3 (ppb) 56 30.1 (3.7) 25.6 29.5 37.3 
      

BC = black carbon; NO2 = nitrogen dioxide; O3 = ozone; SD = standard deviation; UFP = ultrafine particles. 
aFixed-site black carbon data were not collected in Montreal because of instrument failure.  
 
 
Table A.3. Instrument Limits of Detection 

Instrument 
(Manufacturer) Measure Detection Range Reported 

Accuracy 
Time 

Resolution 
DiSCmini (Testo) 
 

UFP number  103–106 particles/cm3 ±30% 1 sec 
UFP size 
 

10–300 nm ±30% 1 sec 

Partector 2 
(Naneos) 

UFP number  0–106 particles/cm3 ±30% 1 sec 
UFP size 
 

10–300 nm ±30% 1 sec 

MA350 
(microAeth) 

BC 30–106 ng/m3 ±100 ng 1 sec 

BC = black carbon; UFP = ultrafine particles. 
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Table A.4. Locations Used for Hourly Ambient Weather Conditions 
Study Area Station Code Station Name Longitude Latitude 

Montreal CYUL Pierre Elliot Trudeau Intl −73.7414 45.4683 
Torontoa CYYZ Lester B Pearson Intl −79.6306 43.6772 
Torontoa CYTZ Toronto City Center −79.3950 43.6286 

aThe mean value from the two Toronto stations was used. 
 
 
Table A.5. Land Use and Traffic Parameters Examined for LUR Model Development 

Variable Source (Year) 
Average daily traffic NOx emissions within buffer (grams) EMME + MOVES (2020) 
Average daily traffic volume within buffer (#) EMME (2020) 
Building land use area within buffer (m2) DMTI (2013) 

Length of bus routes within buffer (m) City of Montreal (2016) 
City of Toronto (2020) 

Number of bus stops within buffer (#) City of Montreal (2016)  
City of Toronto (2020) 

Commercial land use area within buffer (m2) DMTI (2013) 
Governmental land use area within buffer (m2) DMTI (2013) 
Length of highways within buffer (m) DMTI (2013) 
Industrial land use area within buffer (m2) DMTI (2013) 
Length of major roads within buffer (m) DMTI (2013) 

Number of intersections within buffer (#) City of Montreal (2020) 
City of Toronto (2020) 

Number of NPRI NOx sources within buffer (#) NPRI (2014) 
Number of NPRI PM sources within buffer (#) NPRI (2014) 
Open area within buffer (m2) DMTI (2013) 
Park area within buffer (m2) DMTI (2013) 
Population living within buffer (# people) Statistics Canada (2011) 
Length of railroad within buffer (m) DMTI (2013) 
Residential land use area within buffer (m2) DMTI (2013) 
Number of restaurants within buffer (#) Google (2018) 
Length of roads within buffer (m) DMTI (2013) 
Total traffic NOx emissions within buffer (grams) EMME + MOVES (2020) 
Total traffic count within buffer (#) EMME (2020) 
Waterbody area within buffer (m2) DMTI (2013) 
Distance to nearest airport (m) DMTI (2013) 

Distance to nearest bus stop (m) City of Montreal (2016) 
City of Toronto (2020) 

Distance to nearest highway (m) DMTI (2013) 
Distance to nearest major road (m) DMTI (2013) 
Distance to nearest NPRI NOx source (m) NPRI (2014) 
Distance to nearest NPRI PM source (m) NPRI (2014) 
Distance to nearest port (m) World Port Index (2019) 
Distance to nearest rail (m) DMTI (2013) 
Distance to nearest shore (m) Statistics Canada (2011) 

LUR = land use regression; MOVES = Motor Vehicle Emission Simulator; NOx = nitrogen oxides; NPRI = National 
Pollutant Release Inventory; PM = particulate matter. 
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Table A.6. Comparison of Descriptive Statistics for Road Segments Visited Various Number of 
Times During Monitoring Campaigna 

City 

Visits 
per 

Road 
Segment 

(n) 

UFP Number 
(particles/cm3)  UFP Size (nm)  BC (ng/m3) 

Median 
(IQR) 

5th–95th  
percentile  Median 

(IQR) 
5th–95th 
percentile  Median 

(IQR) 
5th–95th 
percentile 

Toronto 
 

n ≥ 10 15,831 
(12,255) 

7,265–
38,695 

 33.8 (5.8) 25.6–44.0  1,099 (933) 569–2,738 

n ≥ 6 15,791 
(12,798) 

7,231–
48,952 

 33.8 (7.1) 23.3–44.0  1,155 
(1,034) 

441–3,145 

6 > n > 1 17,849 
(22,385) 

5,017–
79,049 

 33.9 
(11.3) 

20.3–50.6  1,339 
(1,352) 

198–4,885 

n = 1 16,621 
(21,524) 

3,261–
92,723 

 34 (17.4) 18.0–55.4  1,082 
(1,353) 

15–3,963 

Montreal 
 

n ≥ 10 16,030 
(14,551) 

5,220–
46,609 

 29.1 (9.1) 19.8–43.0  1,189 
(1,127) 

291–2,861 

n ≥ 6 15,141 
(13,693) 

4,913–
46,709 

 29.6 
(10.0) 

19.0–45.1  1,083 
(1,106) 

257–2,871 

6 > n > 1 12,034 
(11,667) 

2,923–
47,130 

 31.5 
(15.0) 

17.0–54.0  854 (942) 101–3,116 

n = 1 8,181 
(10,603) 

1,713–
39,895 

 34.3 
(25.2) 

16.0–65.0  675 (1,091) 15–3,024 

BC = black carbon; IQR = interquartile range; UFP = ultrafine particles. 
aAll models were developed using data from road segments visited six or more times (n > 6). 
 
 
Table A.7. Comparison of Land Use and Traffic Parameters for Road Segments Visited Various 
Number of Times During Monitoring Campaigna 

City 

Visits per 
Road 

Segment 
(n) 

Median Traffic or Land Use Within 100 m  Median Distance to 
Feature 

NOx 
emissions 

(g) 

Road 
length 

(m) 

Highway 
length 

(m) 

Open 
area 
(m2) 

Residential 
area (m2) 

Number 
of bus 
stops 
(m2) 

 

NPRI 
PM2.5 
source 

(m) 

Highway 
(m) 

Toronto 
 

n ≥ 10 86 668 339 8,120 11,051 0.93  2,024 966 
n ≥ 6 79 690 342 8,138 12,300 0.95  1,995 871 
6 > n > 1 78 725 380 8,983 13,173 0.98  2,032 1,005 
n = 1 49 607 225 5,811 15,670 1.03  2,261 1,262 

Montreal n ≥ 10 111 886 414 10,399 12,173 1.1  1,600 403 
n ≥ 6 95 851 377 9,787 12,307 1.09  1,532 515 
6 > n > 1 47 755 240 6,882 14,258 1.45  1,285 527 
n = 1 21 632 83 3,728 18,739 1.4  1,751 891 

NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM2.5 = particulate matter ≤2.5 μm in 
aerodynamic diameter. 
aAll models were developed using data from road segments visited six or more times (n > 6). The land use and 
traffic parameters in this table were selected because they had the strongest associations with UFP and BC (i.e., the 
lowest MSE in univariable regressions). 
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Table A.8. Model RMSE in Test Seta 

City Pollutant RMSE in Test Set 
LUR CNN Combined 

Montreal 
 UFP number (particles/cm3) 0.450 0.495 0.442 

UFP size (nm) 6.245 6.631 6.165 
BC (ng/m3) 0.458 0.514 0.457 

Toronto 
 UFP number (particles/cm3) 0.367 0.394 0.358 

UFP size (nm) 4.054 4.622 4.050 
BC (ng/m3) 0.360 0.387 0.346 

BC = black carbon; CNN = convolutional neural network; LUR = land use regression; RMSE = root mean square 
error; UFP = ultrafine particles. 
aUFP number concentration and BC were log-transformed for model development. 
 
 
Table A.9. Pearson Correlation Between LUR and CNN Model Predictions in Test Set 

City Pollutant Pearsons r 

Montreal 
 

UFP number (particles/cm3) 0.80 

UFP size (nm) 0.83 

BC (ng/m3) 0.77 
Toronto 
 

UFP number (particles/cm3) 0.86 

UFP size (nm) 0.82 

BC (ng/m3) 0.83 
BC = black carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
 
 
Table A.10. Comparison of Model Performance When Trained on City-Specific Data versus Multi-
city Dataa 

City Pollutant 

 
R2 in Test Set 

LUR  CNN  Combined 

City-
specific 

Multi-
city   City-

specific 
Multi-

city 
 City-

specific 
Multi-

city 

Montreal 
 

UFP number 
(particles/cm3) 0.59 0.54  0.49 0.47  0.60 0.55 

UFP size (nm) 0.48 0.44  0.41 0.38  0.49 0.46 

BC (ng/m3) 0.58 0.58  0.50 0.49  0.60 0.58 
Toronto 
 

UFP number 
(particles/cm3) 0.71 0.62  0.66 0.63  0.73 0.69 

UFP size (nm) 0.56 0.38  0.43 0.39  0.55 0.43 

BC (ng/m3) 0.60 0.49  0.53 0.51  0.61 0.59 

BC = black carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
aOne model was trained on data pooled from both cities. 
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Table A.11. Comparison of LUR Model Performance with and without Temporal Adjustmenta  

City Pollutant 

LUR Model R2 in Test Set 

Temporal 
adjustment in 

training set  
(primary 
analysis) 

Temporal 
adjustment in 
validation set  

(sensitivity 
analysis) 

No temporal 
adjustment  
(sensitivity 
analysis) 

Montreal 
 

UFP number 
(particles/cm3) 0.60 0.59 0.57 

UFP size (nm) 0.48 0.46 0.41 
BC (ng/m3) 0.58 0.58 0.56 

Toronto 
 

UFP number 
(particles/cm3) 0.71 0.70 0.70 

UFP size (nm) 0.56 0.50 0.51 
BC (ng/m3) 0.60 0.57 0.55 

BC = black carbon; LUR = land use regression; UFP = ultrafine particles. 
aTemporal adjustment was conducted in the training data set during training and in the validation set after training 
(as was done with the CNN models). Comparison showed only a small change in model performance, which 
suggests that there was only a small degree of weather-related temporal variation in the aggregated monitoring data. 
 
 
Table A.12. Comparison of CNN Model Performance with and without Temporal Adjustment in 
Validation Seta 

City Pollutant 

CNN Model R2 in Test Set 

Temporal adjustment 
in validation set  

(primary analysis) 

No temporal adjustment  
(sensitivity analysis) 

Montreal 
 

UFP number (particles/cm3) 0.49 0.45 
UFP size (nm) 0.41 0.36 
BC (ng/m3) 0.50 0.47 

Toronto 
 

UFP number (particles/cm3) 0.66 0.68 
UFP size (nm) 0.43 0.43 
BC (ng/m3) 0.53 0.51 

BC = black carbon; CNN = convolutional neural network; UFP = ultrafine particles. 
aComparison showed only a small change in model performance, which suggests that there was only a small degree 
of weather-related temporal variation in the aggregated monitoring data. 
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Table A.13. Median Difference Between LUR and CNN Predicted Values in Test Set 
Pollutant Montreal  Toronto 

Mean difference (95% CI)  Mean difference (95% CI) 
UFP number (particles/cm3) 

271.24 (−5,469.1, 12,175.44)  −2,231.83 
(−17,070.19, 
6,113.85) 

UFP size (nm) −0.41 (−6.29, 6.31)  0.79 (−3.49, 5.44) 
BC (ng/m3) 22.07 (−369.19, 976.72)  −51.12 (−745.15, 781.05) 
BC = black carbon; CI = confidence interval; CNN = convolutional neural network; LUR = land use regression; 
UFP = ultrafine particles. 
 
 
Table A.14. Median Difference Between LUR and CNN Predicted Values in Test Set for Road 
Segments When Observed Aggregated UFP Number Concentration Was Greater than 45,000 
particles/cm3 

Pollutant Median Difference (5th, 95th percentile) 
Montreal Toronto 

UFP number (particles/cm3) 8,724 (−3,368, 25,943) −5871 (−29,269, 10,550) 
UFP size (nm) −4.71 (−11.02, 1.16) 1.23 (−3.45, 4.76) 
BC (ng/m3) 323 (−263, 1,248) −157 (−929, 788) 
BC = black carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
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Table A.15. Slope and Intercept of Predictions versus Observed Values in Test Set 
Pollutant Model Parameter  Montreal  Toronto 

 Estimate (95% CI)  Estimate (95% CI) 
UFP number 
(particles/cm3) 
 

LUR 
 

Intercept 
 0.73 (0.30, 1.15)  −0.29 (−0.69, 

0.12) 
Slope  0.92 (0.88, 0.96)  1.03 (0.99, 1.08) 

CNN 
 

Intercept 
 −0.87 (−1.48, 

−0.25) 
 0.21 (−0.22, 

0.63) 
Slope  1.09 (1.03, 1.16)  0.97 (0.93, 1.01) 

Combined 
 

Intercept  −0.40 (−0.87, 0.08)  0.65 (0.3, 1.00) 
Slope  1.04 (0.99, 1.09)  0.93 (0.89, 0.96) 

UFP size (nm) 
LUR 
 

Intercept 
 3.23 (1.48, 4.98)  0.64 (−1.22, 

2.50) 
Slope  0.90 (0.85, 0.96)  0.98 (0.93, 1.03) 

CNN 
 

Intercept 
 −6.79 (−9.47, 

−4.12) 
 4.92 (2.82, 7.02) 

Slope  1.21 (1.13, 1.29)  0.88 (0.81, 0.94) 

Combined 
 

Intercept 
 −5.14 (−7.33, 

−2.96) 
 1.73 (−0.11, 

3.57) 
Slope  1.15 (1.09, 1.22)  0.96 (0.91, 1.02) 

BC (ng/m3) 
 

LUR 
 

Intercept  0.51 (0.20, 0.82)  0.61 (0.25, 0.96) 
Slope  0.93 (0.89, 0.98)  0.92 (0.87, 0.97) 

CNN 
 

Intercept 
 −0.47 (−0.90, 

−0.05) 
 0.57 (0.16, 0.98) 

Slope  1.08 (1.02, 1.14)  0.92 (0.87, 0.98) 

Combined 
 

Intercept 
 −0.44 (−0.78, 

−0.09) 
 0.77 (0.44, 1.10) 

Slope  1.07 (1.02, 1.12)  0.90 (0.85, 0.94) 
BC = black carbon; CI = confidence interval; CNN = convolutional neural network; LUR = land use regression; 
UFP = ultrafine particles. 
 
 
Table A.16. Hazard Ratios for Interquartile Increases in Ox Exposures and Mortalitya 

Cause of Mortality 
Hazard Ratio (95% CI) 

Ox 
(per 4.51 ppb) 

Nonaccidental 1.025 (1.015, 1.035) 
Cardiovascular 1.049 (1.029, 1.069) 
Cardiometabolic 1.048 (1.029, 1.067) 
Ischemic heart disease  1.083 (1.056, 1.111) 
Cerebrovascular 1.028 (0.985, 1.073) 
Respiratory 1.048 (1.013, 1.084) 
Lung cancer 0.976 (0.945, 1.008) 

CI = confidence interval; Ox = ozone. 
aAll models included sociodemographic variables and residential exposure to PM2.5, BC, UFP number concentration, 
and UFP size. 
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APPENDIX A FIGURES 
 
Figure A.1. Mobile monitoring routes in Montreal (A) and Toronto (B). 
 

A B 
 

 

 

 
 
Figure A.2. Maps of the training, validation, and test sets in Toronto and Montreal.  
Model development data were split by geohash code (precision 6) to increase the spatial independence of 
the test set. 
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Figure A.3. Directed acyclic graphs for the relationships between outdoor UFP number 
concentrations (A) and black carbon (B) and mortality.  
Shaded boxes indicate variables included as covariates or strata variables in the analysis. SES = 
socioeconomic status; UFP = ultrafine particles. 
 
A

 
 
B 
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Figure A.4. Spatial coverage of the Montreal UFP number concentrations monitoring data when 
restricting the minimum number of visits per road segment.  
UFP = ultrafine particles. 
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Figure A.5. Spatial coverage of the Toronto UFP number monitoring data when restricting the 
minimum number of visits per road segment.  
UFP = ultrafine particles. 
 

 
 
 
 

  



16 
 

Figure A.6. Spearman’s correlations between land use and traffic parameters included in the 
Montreal LUR for UFP number concentrations.  
A criterion for variable selection was a Spearman’s r < 0.7 with other variables in the model. LUR = land 
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate 
matter; UFP = ultrafine particles. 
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Figure A.7. Spearman’s correlations between land use and traffic parameters included in the 
Montreal LUR model for UFP size.  
A criterion for variable selection was a Spearman’s r < 0.7 with other variables in the model. LUR = land 
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate 
matter; UFP = ultrafine particles. 
 

 
  



18 
 

Figure A.8. Spearman’s correlations between land use and traffic parameters included in the 
Montreal LUR for BC.  
A criterion for variable selection was a Spearman’s r < 0.7 with other variables in the model. BC = black 
carbon; LUR = land use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; 
PM = particulate matter. 
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Figure A.9. Spearman’s correlations between land use and traffic parameters included in the 
Toronto LUR for UFP number concentrations.  
A criterion for variable selection was a Spearman’s r < 0.7 with other variables in the model. LUR = land 
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate 
matter; UFP = ultrafine particles. 
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Figure A.10. Spearman’s correlations between land use and traffic parameters included in the 
Toronto LUR model for UFP size.  
A criterion for variable selection was a Spearman’s r < 0.7 with other variables in the model. LUR = land 
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate 
matter; UFP = ultrafine particles. 
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Figure A.11. Spearman’s correlations between land use and traffic parameters included in the 
Toronto LUR for BC.  
A criterion for variable selection was a Spearman’s r < 0.7 with other variables in the model. LUR = land 
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate 
matter. 
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Figure A.12. Maps of spatial variation in median meteorological conditions during monitoring for 
Montreal (A: temperature; B: relative humidity; C: wind speed) and Toronto (i: temperature; ii: 
relative humidity; iii: wind speed).  
The monitoring campaign was designed to have a temporal balance between monitoring routes, but there 
were chance imbalances that can be seen in the spatial variation in meteorological conditions during 
monitoring. To account for the imbalances, models included temporal adjustments.  
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Figure A.13. Relationships between meteorological variables and changes in pollutant levels in each 
of the Montreal LUR models.  
UFP number concentrations and BC were log-transformed for model training; UFP size was not. Each 
plot includes a rug to show the distribution of the median meteorological values for the training sites. BC 
= black carbon; LUR = land use regression; UFP = ultrafine particles. 
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Figure A.14. Relationships between meteorological variables and changes in pollutant levels in each 
of the Toronto LUR models.  
UFP number concentrations and BC were log-transformed for model training; UFP size was not. Each 
plot includes a rug to show the distribution of the median meteorological values for the training sites. BC 
= black carbon; LUR = land use regression; UFP = ultrafine particles. 
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Figure A.15. Comparing test set LUR mean UFP size predictions to CNN predictions in Montreal 
and Toronto (A) with a histogram of observed values for reference (B).  
The median difference in predicted mean UFP size between the Montreal LUR and Montreal CNN was 
−0.4 nm (5th–95th quantile: −6.29 to 6.31). For Toronto, the median difference was 0.8 nm (5th–95th 
quantile: −3.49 to 5.44). Pearson correlation coefficient of the LUR and CNN model predictions was 0.83 
for Montreal and 0.82 for Toronto. CNN = convolutional neural network; LUR = land use regression; 
UFP = ultrafine particles. 
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Figure A.16. Comparing test set LUR BC predictions to CNN predictions in Montreal and Toronto 
(A) with a histogram of observed values for reference (B).  
Similar to the UFP number concentration models, for the highest BC concentrations (e.g., near 2,500 
ng/m3), the Montreal CNN predictions appeared to the systematically lower than the Montreal LUR 
predictions. Unlike the UFP number concentration models, there was no similar contrast for Toronto. The 
mean difference in predicted BC concentration between the Montreal LUR and Montreal CNN was 22 
ng/m3 (5th–95th quantile: −369, 977). For Toronto, the mean difference was −51 ng/m3 (5th–95th 
quantile: −745, 781). The Pearson correlation coefficient of the LUR and CNN model predictions was 
0.77 for Montreal and 0.0.83 for Toronto. BC = black carbon; CNN = convolutional neural network; LUR 
= land use regression; UFP = ultrafine particles. 
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Figure A.17. Comparing LUR and CNN predictions of UFP number concentrations from the city-
specific model and the multi-city models.  
The multi-city CNN model (trained on Toronto and Montreal; blue in panel B) generates fewer very high 
predictions in Toronto compared to the city-specific CNN model trained in Toronto (blue in panel A). 
Conversely, the multi-city CNN model (red in panel B) generates more very high predictions in Montreal 
than the city-specific model trained on Montreal (red in panel A). The CNN model trained on only 
Toronto data seems to be better at generating very high UFP number concentration predictions. The 
multi-city CNN model trained on Toronto and Montreal data seems to generate slightly lower predictions 
and the CNN model trained on only Montreal data generates even lower predictions. CNN = 
convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
 

 
  



28 
 

Figure A.18. Comparing UFP number concentrations model predictions from the city-specific 
models to the multi-city models.  
The Montreal CNN (panel A) generates higher predictions when trained on both Toronto and Montreal 
data (i.e., the multi-city model). The Toronto CNN (panel C) generates higher predictions when trained 
on only Toronto data (i.e., the city-specific model). CNN = convolutional neural network; LUR = land 
use regression; UFP = ultrafine particles. 
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Figure A.19. Observed UFP number concentrations over 40,000 particles/cm3 in Toronto are all 
situated on highways. 
In Toronto, the city-specific CNN model trained on Toronto data generally generated higher predictions 
than the multi-city CNN model trained on both Montreal and Toronto data. CNN = convolutional neural 
network; UFP = ultrafine particles. 
 

 
 
Figure A.20. Observed UFP number concentrations over 40,000 particles/cm3 in Montreal are all 
situated on highways.  
In Montreal, the city-specific CNN model trained on Montreal data generally generated lower predictions 
than the multi-city CNN model trained on both Montreal and Toronto data. CNN = convolutional neural 
network; UFP = ultrafine particles. 
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Figure A.21. Visualizing intermediate activations of filters of the Conv2D layer in the CNN models 
trained on Toronto data and trained on Montreal and Toronto data.  
Filters were visualized while the model generated a prediction on a single picture in Toronto. This kind of 
visualization can provide clues about what features are important for generating a prediction. The 
majority of the filters of the two models were virtually identical, but one was slightly different and has 
been enlarged in the figure. Notice the dark pavement in the upper part of the original picture. Panel A 
shows the city-specific model giving greater importance (i.e., lighter color) to the dark pavement than the 
multi-city model in panel B. A possible explanation is that the dark pavement was freshly laid asphalt on 
this major highway running through Toronto. When the model was trained on Toronto data only, the 
CNN model may have learned to associate dark pavement with very high UFP number concentrations. 
Conversely, when the model was trained on Montreal and Toronto data, there may have been relatively 
little fresh asphalt on Montreal highways and thus weaker associations between very high UFP number 
concentrations and dark pavement in the training dataset. CNN = convolutional neural network; UFP = 
ultrafine particles. 
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Figure A.22. Scatter plots of observed and predicted UFP number concentrations in the test set.  
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
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Figure A.23. Scatter plots of observed and predicted mean UFP size in the test set.  
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
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Figure A.24. Scatter plots of observed and predicted BC in the test set.  
BC = black carbon; CNN = convolutional neural network; LUR = land use regression. 
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Figure A.25. Identifying the clusters of Toronto LUR UFP number concentration predictions in the 
test set. The colors indicate the LUR prediction clusters.  
There was less distinct clustering in the CNN predictions, and the LUR prediction clusters are somewhat 
mixed in the CNN predictions. CNN = convolutional neural network; LUR = land use regression; UFP = 
ultrafine particles. 

 

 

Figure A.26. Inspecting the Toronto LUR UFP number concentration prediction clusters in the test, 
train and validate sets.  
The pronounced clustering with empty space between the clusters observed in the test set was not 
observed in the training set. The validate set appeared to have two instead of three clusters. This suggests 
that the clustering may be partially due to chance of the random data split as well as the spatial structure 
imposed on the data split. LUR = land use regression; UFP = ultrafine particles. 
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Figure A.27. Identifying the locations of the LUR UFP number concentration prediction clusters.  
The cluster colors are the same as in Figure A.26. The red clusters appear on major highways, especially 
near intersecting highways. The yellow cluster appears on or near highways and the green cluster is 
mostly off. LUR = land use regression; UFP = ultrafine particles. 
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Figure A.28. Inspecting distributions of land use and traffic parameters stratified by LUR UFP 
number concentration prediction cluster.  
These are the land use and traffic parameters in the Toronto UFP number concentration LUR. The 
average daily traffic NOx emissions parameter is the most important variable in this model. Residential 
area may have also contributed to the observed clustering. LUR = land use regression; NOx = nitrogen 
oxides; UFP = ultrafine particles. 
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Figure A.29. Average daily traffic NOx response curves in the Toronto BC and UFP number 
concentration LUR models.  
The BC concentration-response curve flattens at very high levels of average daily traffic NOx, which is 
likely why there was less pronounced clustering in the BC concentration prediction scatterplots. The 
response curve in the UFP number concentration model continues to increase at very elevated levels of 
average daily traffic NOx, which was likely on major highways. BC = black carbon; GAM = generalized 
additive model; LUR = land use regression; NOx = nitrogen oxides; UFP = ultrafine particles. 
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Figure A.30. Spatial distribution of UFP number concentrations model errors (scaled) in all data 
for the LUR, CNN, and combined models in Toronto and Montreal.  
Purple lines are major highways. A small amount of jitter was added to the points to improve visibility of 
points. CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
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Figure A.31. Spatial distribution of UFP size model errors (scaled) in all data for the LUR, CNN, 
and combined models in Toronto and Montreal.  
Purple lines are major highways. A small amount of jitter was added to the points to improve visibility of 
points. CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
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Figure A.32. Spatial distribution of BC model errors (scaled) in all data for the LUR, CNN, and 
combined models in Toronto and Montreal.  
Purple lines are major highways. A small amount of jitter was added to the points to improve visibility of 
points. BC = black carbon; CNN = convolutional neural network. 
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Figure A.33. Surfaces of scaled differences between predicted UFP number concentrations from 
LUR and CNN models in Toronto and Montreal.  
Red indicates areas where the LUR predicted higher than the CNN, and blue indicates areas where the 
CNN predicted higher than the LUR. The color along major highways differs between the two cities, with 
the LUR predicting higher in Montreal and the CNN predicting higher in Toronto. CNN = convolutional 
neural network; LUR = land use regression; UFP = ultrafine particles. 
 

 
 
 
 
Figure A.34. Surfaces of scaled differences between predicted UFP size from LUR and CNN models 
in Toronto and Montreal.  
Red indicates areas where the LUR predicted higher than the CNN, and blue indicates areas where the 
CNN predicted higher than the LUR. CNN = convolutional neural network; LUR = land use regression; 
UFP = ultrafine particles. 
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Figure A.35. Surfaces of scaled differences between predicted BC concentrations from LUR and 
CNN models in Toronto and Montreal.  
Red indicates areas where the LUR predicted higher than the CNN, and blue indicates areas when the 
CNN predicted higher than the LUR. BC = black carbon; CNN = convolutional neural network; LUR = 
land use regression. 
 

 
 
 
 
Figure A.36. Sensitivity analysis for UFP number concentrations prediction surfaces from LUR 
models trained without latitude and longitude for Toronto and Montreal.  
LUR = land use regression; UFP = ultrafine particles. 
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Figure A.37. Sensitivity analysis for UFP size prediction surfaces from LUR models trained without 
latitude and longitude for Toronto and Montreal.  
LUR = land use regression; UFP = ultrafine particles. 

 
 
 
 
Figure A.38. Sensitivity analysis for BC prediction surfaces from LUR models trained without 
latitude and longitude for Toronto and Montreal.  
BC = black carbon; LUR = land use regression. 
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Figure A.39. CNN predictions for UFP number concentrations in Montreal for original and 
modified images.  
Original images (A) have parts of images added (B) to produce modified images (C) with the expectation that the 
CNN prediction from the original image will become more similar to that of the added image after modification. 
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
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Figure A.40. CNN predictions for BC in Montreal for original and modified images.  
Original images (A) have parts of images added (B) to produce modified images (C) with the expectation 
that the CNN prediction from the original image will become more similar to that of the added image 
after modification. BC = black carbon; CNN = convolutional neural network; LUR = land use regression. 
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Figure A.41. CNN predictions for UFP number concentrations in Toronto for original and modified 
images.  
Original images (A) have parts of images added (B) to produce modified images (C) with the expectation that the 
CNN prediction from the original image will become more similar to that of the added image after modification. 
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
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Figure A.42. CNN predictions for BC in Toronto for original and modified images.  
Original images (A) have parts of images added (B) to produce modified images (C) with the expectation 
that the CNN prediction from the original image will become more similar to that of the added image 
after modification. BC = black carbon; CNN = convolutional neural network; LUR = land use regression. 
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Figure A.43. Changes in CNN predictions for UFP number concentrations when using images of 
Sunnybrook Park in Toronto downloaded in December 2021 versus July 2022.  
Google does not provide information on when a satellite image is captured, but it is clear that the Google 
Maps images were updated at some point in 2022. The updated images are greener than the images used 
to develop the CNN models. It appears that the greener images have fewer long and straight edges (i.e., 
boundaries between green and brown grass), which may explain the generally lower CNN predicted UFP 
PNC values. The CNN model may have learned to associate long straight edges (e.g., highways and 
railroads) with higher levels of pollution. CNN = convolutional neural network; LUR = land use 
regression; UFP = ultrafine particles. 
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Figure A.44. Changes in CNN predictions for BC when using images of Sunnybrook Park in 
Toronto downloaded in December 2021 versus July 2022.  
BC = black carbon; CNN = convolutional neural network; LUR = land use regression. 
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Figure A.45. Mobility-weighted combined models for UFP number concentrations in Toronto and 
Montreal using neighborhood-level survey data from various years.  
The unweighted surfaces are shown in the last row as a reference. UFP = ultrafine particles. 
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Figure A.46. Mobility-weighted combined models for UFP size in Toronto and Montreal using 
neighborhood-level survey data from various years.  
The unweighted surfaces are shown in the last row as a reference. UFP = ultrafine particles. 
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Figure A.47. Mobility-weighted combined models for BC in Toronto and Montreal using 
neighborhood-level survey data from various years.  
The unweighted surfaces are shown in the last row as a reference. BC = black carbon. 
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Figure A.48. Change in Toronto combined model UFP number concentrations predictions after 
applying 2006 and 2016 mobility weights.  
Neighborhood border color indicates the neighborhood’s UFP number concentration tertile prior to 
mobility weighting. Neighborhood area color indicates the change in neighborhood UFP PNC after 
applying mobility weights. Smoothing can be seen where neighborhoods with green borders and red areas 
initially had low concentrations that increased after applying mobility weights, and vice versa for 
neighborhoods with orange borders with green areas. UFP = ultrafine particles. 

 
 
 
 
Figure A.49. Change in Toronto combined model BC concentration predictions after applying 2006 
and 2016 mobility weights.  
Neighborhood border color indicates the neighborhood’s BC concentration tertile prior to mobility 
weighting. Neighborhood area color indicates the change in neighborhood UFP number concentration 
after applying mobility weights. Smoothing can be seen where neighborhoods with green borders and red 
areas initially had low concentrations that increased after applying mobility weights, and vice versa for 
neighborhoods with orange borders with green areas. BC = black carbon; UFP = ultrafine particles. 
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Figure A.50. Change in Montreal combined model UFP number concentration predictions after 
applying 2003 and 2018 mobility weights.  
Neighborhood border color indicates the neighborhood’s UFP number concentrations tertile prior to 
mobility weighting. Neighborhood area color indicates the change in neighborhood UFP PNC after 
applying mobility weights. Smoothing can be seen where neighborhoods with green borders and red areas 
initially had low concentrations that increased after applying mobility weights, and vice versa for 
neighborhoods with orange borders with green areas. The use of 2003 versus 2018 weights resulted in 
different degrees of smoothing. UFP = ultrafine particles. 
 

 
 
 
 
Figure A.51. Change in Montreal combined model BC predictions after applying 2003 and 2018 
mobility weights.  
Neighborhood border color indicates the neighborhood’s BC concentration tertile prior to mobility 
weighting. Neighborhood area color indicates the change in neighborhood BC concentration after 
applying mobility weights. Smoothing can be seen where neighborhoods with green borders and red areas 
initially had low concentrations that increased after applying mobility weights, and vice versa for 
neighborhoods with orange borders with green areas. The use of 2003 versus 2018 weights resulted in 
different degrees of smoothing. BC = black carbon. 
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Figure A.52. Toronto combined model UFP number concentrations surfaces backcasted to various 
years.  
LUR predictions using available historical traffic data were incorporated into the combined model. LUR 
= land use regression; UFP = ultrafine particles. 
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Figure A.53. Toronto combined model UFP size surfaces backcasted to various years.  
LUR predictions using available historical traffic data were incorporated into the combined model. The 
higher historical traffic emissions resulted in smaller predicted UFP size along roads. LUR = land use 
regression; UFP = ultrafine particles. 
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Figure A.54. Toronto combined model BC surfaces backcasted to various years.  
LUR predictions using available historical traffic data were incorporated into the combined model. BC = 
black carbon; LUR = land use regression. 
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Figure A.55. Montreal combined model UFP number concentration surfaces backcasted to various 
years.  
LUR predictions using available historical traffic data were incorporated into the combined model. LUR 
= land use regression; UFP = ultrafine particles. 
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Figure A.56. Montreal combined model UFP size surfaces backcasted to various years.  
LUR predictions using available historical traffic data were incorporated into the combined model. LUR 
= land use regression; UFP = ultrafine particles. 
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Figure A.57. Montreal combined model BC surfaces backcasted to various years.  
LUR predictions using available historical traffic data were incorporated into the combined model. BC = 
black carbon; LUR = land use regression. 
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Figure A.58. Concentration-response curves of outdoor BC and mortality outcomes.  
BC = black carbon. 
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Figure A.59. Concentration-response curves for outdoor UFP number concentrations, UFP size, and mortality outcomes for the LUR and 
CNN models separately.  
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 
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APPENDIX B: MONITORING AND 
BACKCASTING DETAILS 
1. MONITORING LESSONS LEARNED 
We completed large-scale mobile and fixed-site monitoring campaigns in Montreal and Toronto. The 
final models described in this report were developed using UFP and BC data that were collected 
simultaneously during more than 1,200 hours of mobile monitoring. Unfortunately, we also encountered 
several challenges that limited the amount of usable data. The challenges, impacts, and lessons learned are 
listed below. 
A. O3 and NO2 Mobile Monitoring 

1. Challenge: O3 and NO2 were monitored during the mobile monitoring campaign using the newly 
developed Urban Scanner from Scentroid (Stouffville, Ontario, CA). In preparation for the 
mobile monitoring campaign, a 9-day co-location campaign was conducted in the summer of 
2020 next to a US EPA-approved fixed-air quality station in Toronto with additional co-location 
campaigns planned to take place throughout the mobile monitoring campaign. After the start of 
the mobile monitoring campaign, it became apparent that the Urban Scanner required much more 
calibration. This was conducted by Scentroid staff and our team members in Toronto, Canada. 
We had a second Urban Scanner for Montreal that was sent to Scentroid midway through the 
mobile monitoring campaign for upgrades and additional calibration, but this second unit never 
worked properly. 

2. Impact: The Montreal O3 and NO2 data were not valid, and thus we did not develop new O3 and 
NO2 models for Montreal. The extensive effort to calibrate the Toronto Urban Scanner and the 
new Toronto O3 and NO2 models are described here:  

a. Ganji A, Youssefi O, Xu J, Mallinen K, Lloyd M, Wang A, et al. Design, calibration, and 
testing of mobile sensor system for air pollution and build environment data collection: the 
urban scanner platform. Environ Pollut 2023;317:120720. 

b. Ganji A, Saeedi M, Lloyd M, Xu J, Weichenthal S, Hatzopoulou M. 2023. Air pollution 
prediction and backcasting through a combination of mobile monitoring and historical 
on-road traffic emission inventories. Submitted for publication. 

For the epidemiological analysis, we applied exposure estimates from these existing models to the 
cohort rather than mixing our new O3 and NO2 model estimates for Toronto with existing O3 and 
NO2 model estimates for Montreal. 

3. Lesson learned: Extensive time should be allocated to calibrate and test newly developed 
monitoring equipment. If that is not feasible, then existing equipment with a proven track record 
should be used instead of newly developed equipment. 

B. Winter Fixed-Site Monitoring 
1. Challenge: COVID-19 restrictions prevented our team from meeting in person and conducting 

winter fixed-site monitoring. Mobile monitoring was still possible because it required only one 
team member at a time to be in the laboratory or in the monitoring vehicle. 

2. Impact: Without winter fixed-site UFP and BC data, we could not develop annual average UFP 
and BC models based on fixed-site monitoring.  

3. Lesson learned: Under certain circumstances, mobile monitoring can be easier to conduct than 
fixed-site monitoring.  

C. Summer UFP Fixed-Site Monitoring 
1. Challenge: We used Naneos Partector 2 and Testo DiSCmini handheld UFP monitors for the 2-

week-long fixed-site monitoring. Ambient weather conditions during monitoring were 
unseasonably hot and humid. At times, the ambient temperature exceeded 30°C and relative 
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humidity exceeded 90%, which are both above the operating conditions of the Partector 2 and the 
DiscMini. 

2. Impact: Within a few days of monitoring, the high ambient temperatures and humidity resulted in 
errors for most of the UFP monitors. Once there is an error, the data are no longer valid. 
Consequently, we had valid UFP data for only a handful of fixed sites. Coupled with the lack of 
fixed-site data during winter due to COVID-19 restrictions, we could not develop annual average 
UFP models based on fixed-site monitoring. 

3. Lesson learned: The Naneos Partector 2 and Testo DiSCmini may not be suitable for 
continuously monitoring UFP levels over multiple days in high temperature and high relative 
humidity conditions (i.e., outside of their operating conditions). 

D. Summer BC Fixed-Site Monitoring 
1. Challenge: The BC 2-week-long fixed-site monitoring was done using Ultrasonic Personal Air 

Sampler (UPAS) monitors powered by solar panels and external batteries. After we had charged 
the external batteries, they automatically switched off to prevent unintentional discharge. We 
failed to recognize this change and did not set the batteries to “always on” mode for the Montreal 
fixed-site campaign. This meant that each UPAS was being powered only by its internal battery 
and the solar panel, which led to UPAS monitors shutting down on the second night of 
monitoring. 

2. Impact: We collected only approximately 2 days’ worth of data during Montreal summer BC 
fixed-site monitoring. Coupled with the lack of fixed-site data during winter due to COVID-19 
restrictions, we could not develop annual average BC models based on fixed-site monitoring. 

3. Lesson learned: Our UPAS fixed-site monitoring procedure needs to include an external battery 
power check using a USB-powered LED light for visual confirmation that the external battery is 
in “always on” mode and providing power to the UPAS as required. This lesson learned was 
successfully implemented for the Toronto fixed-site campaign. 
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2. ROUTE SELECTION FOR MOBILE MONITORING 
Mobile monitoring routes were selected to include different types of roads and land use 

characteristics across each city. To do this, we first intersected land use and built environment data (road 
variables: highway length, major roads, bus routes, traffic emissions; land use: commercial, parks, water; 
landmarks: airport, port, shoreline; other: elevation, industrial emissions, building height and footprint) 
with a 100 × 100 m grid for both Toronto and Montreal. Next, principal component analysis was used to 
identify components that explained the highest amount of variance in the data. Components that 
represented the most variance were selected for clustering. Specifically, land use clustering was based on 
the silhouette (Si) and Davies-Bouldin methods. The silhouette value for each point is a measure of how 
similar that point is to other points in its own cluster when compared to points in other clusters. It is 
calculated as: 
Si = (bi − ai)/max(ai,bi) 
where:   

• ai is the average distance (e.g., difference in values for a given land use characteristic) 
from the ith point to the other points in the same cluster. 

• bi is the minimum average distance from the ith point to points in a different cluster, 
minimized over clusters. 

The silhouette value ranges from −1 to 1. A high silhouette value indicates that point i is well-
matched to its own cluster and poorly matched to other clusters. To find the optimal number of clusters, 
we used Davies-Bouldin criterion, DB(C), which evaluates how well the clustering has been done. The 
Davies–Bouldin criterion is based on a ratio of within-cluster to between-cluster distances: 

 
where: 

• Dij is the within-to-between cluster distance ratio for the ith and jth clusters (i.e., Dij = (di + 
dj)/ dij). 

• di is the average distance between every data point in cluster i and its centroid, similar for 
dj.  

• dij is the Euclidean distance between the centroids of the two clusters. If two clusters are 
close together (small dij) but have a large spread (large di + dj), then this ratio will be 
large, indicating that these clusters are not very distinct. 

In Montreal, 14 mobile monitoring routes were identified on the basis of the above procedure, 
whereas 20 routes were identified in Toronto (Figure A.1). The same sampling protocol was followed for 
mobile monitoring in both cities with route, day of the week, and start time (7 a.m.–11 p.m.) randomly 
selected each day. Monitoring was conducted approximately 5 days per week, and approximately four 
routes were monitored during each sampling period for a total route length of approximately 75 km per 
monitoring day (~4 hours).  
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3. QUALITY CONTROL PROCEDURES FOR DATA COLLECTION  
 
3.1. MOBILE MONITORING OF OUTDOOR AIR POLLUTANTS 

In each city, mobile monitoring was conducted using a predefined schedule of routes randomized 
over space, time of day, and day of week (including evenings and weekends). We concurrently used 
research-grade instruments to measure UFPs (Testo DiSCmini/Naneos Partector 2) and BC (Aethlabs 
MA350). All air pollution measurements were collected at 1-second resolution. Due to the technical issues 
with the Montreal O3 and NO2 monitors (described earlier under Lessons Learned) and the removal of those 
gases from the main exposure model development analysis, the QA and QC procedures for mobile O3 and 
NO2 monitoring are not included. 
 
QA AND QC FOR UFP AND BC DATA 

All direct-reading UFP and BC monitors were factory-calibrated before use, and all monitors were 
charged on a daily basis (overnight) to ensure adequate battery life during each mobile monitoring route. 
Zero checks (i.e., making sure the instrument reads 0 particles/cm3 when a zero filter is placed on the inlet) 
were performed on the UFP monitors on a monthly basis, and BC monitor sampling tapes were checked 
weekly to verify that they were not overloaded. The grit pots of the UFP monitors were cleaned weekly 
using a Kimwipe to remove any accumulating dust. At the start of each monitoring run, the monitors were 
powered on and time-synced using timeanddate.com. During mobile monitoring, the monitors were 
periodically checked for error messages, and the run was terminated if there were any errors. At the end of 
each run, the data were offloaded from the monitors to a hard drive and uploaded to the project’s sync.com 
storage. Any value below the lower limit of detection was imputed with a value of half the lower limit of 
detection. Any value above the upper limit of detection was imputed with the upper limit of detection. Any 
monitors that required additional maintenance were sent back to the original equipment manufacturer.  
 
3.2. FIXED-SITE MONITORING OF OUTDOOR AIR POLLUTANTS 

Fixed monitoring sites were selected to capture the range of land use and traffic characteristics 
across Toronto and Montreal while maximizing spatial coverage. Fixed-site monitoring was conducted over 
2 weeks in each city (a second 2-week campaign was planned but could not be completed due to COVID-
19 restrictions; more details provided under Lessons Learned). In Montreal, fixed-site monitoring took 
place during June 2021. In Toronto, fixed-site monitoring took place during July 2021. In both cities, fixed-
site monitoring of all pollutants (UFPs, BC, NO2/O3) took place simultaneously. 
 

QA AND QC FOR FIXED-SITE BC (UPAS) 

Integrated 2-week samples of outdoor BC concentrations were collected at approximately 70 
locations across Montreal and Toronto using UPAS PM2.5 monitors (Access Sensor Technologies) with 37-
mm Teflon filters. This setup includes a UPAS monitor running at 75% duty cycle at 1 L/min (i.e., sampling 
for 45 seconds out of every minute) attached to two external batteries, which are in turn charged by a solar 
panel. All UPAS monitors used to collect BC samples were flow-checked (using an Alicat mass flow meter) 
before and after each campaign to verify a sampling flow within 5% of the target flow rate of 1 L/min. In 
addition, all UPAS monitors were time-synced to ensure simultaneous data collection over each 2-week 
monitoring period. Field blanks (10%) and duplicate samples (~10%) were collected to evaluate the 
reliability of field measurements for BC. After the 2-week monitoring campaign, BC concentrations were 
measured on Teflon filters using a Sootscan Model OT21 Transmissometer (880 nm) (Magee Scientific). 
All Teflon filters were labeled with a unique barcode and also underwent gravimetric analyses for PM2.5 
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mass concentrations at the University of British Columbia to describe ambient air quality conditions during 
fixed-site monitoring. 
 

QA AND QC FOR FIXED-SITE NO2 AND O3 (OGAWA MONITORS)  

Integrated samples of outdoor NO2/O3 concentrations were measured at the same 70 locations as 
the BC monitors using Ogawa passive samplers (Ogawa & Co.). All samples were sent for laboratory 
analyses (ion chromatography, University of Toronto) immediately after each monitoring campaign. Field 
blanks (10%) and duplicate samples (~10%) were collected to evaluate the reliability of field measurements 
for NO2/O3. Ogawa samplers were stored in sealed containers before and after sample collection and were 
refrigerated prior to shipping and laboratory analysis.  
 
QA AND QC FOR FIXED-SITE ULTRAFINE PARTICLES 

We used 20 to 30 Testo DiSCmini nanoparticle counters (and three Partector 2 nanoparticle 
dosimeters, which are a newer version of the DiSCmini that operate on the same principle) to collect fixed-
site UFP data across Montreal and Toronto. These monitors log real-time measurements of UFP number 
concentrations (10–300 nm) at 1-second resolution along with mean particle size and lung deposited surface 
area, which is a function of particle number concentration and particle size. Health Canada has provided 
in-kind use of approximately 20 of these monitors, and we acquired several more using funding from this 
application (three instruments). These monitors have been shown to perform well in comparison to 
laboratory-grade condensation particle counters and are advantageous in that they do not require 
isopropanol to operate; thus, they can collect data over extended periods of time without continuous 
oversight.  

Data collection for fixed-site UFPs occurred over the same 2-week periods as BC and NO2/O3 but 
at different locations. Different locations were needed for UFP monitors because the instruments are very 
expensive (~$11,000–15,000 USD each) and electricity is needed to avoid data loss owing to depleted 
batteries. Residential locations were targeted for fixed-site UFP monitoring, as residences are generally 
secure, available across a range of land use and traffic characteristics, and have access to electricity. These 
sites were recruited through targeted mailing campaigns (including a brief letter outlining the purpose of 
our study) and door-to-door visits, which have proved effective in past spatial studies. We tried to ensure 
that sites were near locations where UPAS monitors would be located, but due to the limited number of 
monitors, there was less coverage. All UFP monitors were factory-calibrated at the start of our study.  
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4. HISTORIC TRAFFIC DATA 
 
4.1. METHODOLOGY 

Traffic and NOx are two crucial variables for the accurate prediction of traffic-related air pollution1 
and were predicted using the Traffic Emission Prediction scheme (TEPs)1,2 from 2006 to 2020 for Toronto 
and from 2015 to 2020 for Montreal. TEPs uses statistical methods and machine learning techniques (e.g., 
time series analysis, LUR geostatistical, neural network, and CNN methods) to generate yearly traffic 
counts and emissions.  

For backcasting, we used traffic data and fleet and emission distributions to generate traffic volumes 
and emission inventories for all roads in Toronto and Montreal. For each road, we computed Sen’s slope 
and Mann-Kendall test to capture trends. Given these trends, traffic and NOx emission predictors were 
adjusted and estimated in previous years. 
 
4.2. TEPs 

The image processing module extracts the road characteristics, including road width and direction, 
from images and subsequently detects the number of vehicles on the road. Then, a neural network approach 
generates hourly and daily traffic volumes for each road based on vehicles extracted from images and road 
characteristics. Because the traffic fluctuates across hours of the day and weeks, a nearest-neighbor 
approach was used to generate coefficients of daily to yearly volumes. These coefficients convert the hourly 
and daily image-based traffic counts to annual average daily traffic (AADT). These coefficients are then 
used to estimate AADT for roads with aerial images and/or short-term traffic counts. 

Pattern recognition uses information from nearby traffic count sites to estimate AADT using daily 
traffic counts predicted from images. AADT is estimated for each road with short to intermediate-length 
traffic counts using pattern recognition. This process uses all available historical and predicted counts to 
estimate a seasonal pattern for both permanent and temporary stations. Then, comparing the normalized 
seasonal patterns between temporary and permanent stations, a short-term station is assigned to a permanent 
station to estimate a traffic growth rate and a transformation coefficient for daily, monthly, and yearly 
volumes. Regression-kriging and regression are used to extend the predicted AADT to roads with no aerial 
images (poor quality or image showing no traffic) or traffic counts. 
 
4.3. MULTIYEAR TRAFFIC AND EMISSIONS INVENTORIES 

The City of Toronto and Montreal manage a traffic data collection program in support of various 
transportation operations and planning functions. Toronto’s traffic count database from 2006 to the present 
is made of 15-minute traffic counts from different types of stations, including permanent traffic counts 
(324 stations, ~1%), short-period traffic counts (~95%), and turning movement counts (TMCs) (~4%). The 
latter are collected manually and are conducted over 10 hours in a single day. Montreal has a network of 
approximately 950 TMC stations situated at various intersections. The data recorded at these stations 
typically span less than 8 days. These TMC data, when combined with the information from MTQ 
permanent stations, play a crucial role in estimating traffic counts for the entire Montreal island. 

To spatially and temporally interpolate traffic counts across the entire road network, we used an 
approach developed by our research group and documented by Ganji and colleagues.1,2 The TEPs uses a 
long record of traffic counts to generate daily traffic. A pattern recognition approach further identifies a 
coefficient to estimate AADT from daily values. This technique provides a unique basis for using short-
term traffic counts (e.g., 1 day) for long-term traffic prediction. TEPs consists of a set of mathematical and 
statistical approaches. Three modules drive the TEPs framework: image processing, pattern recognition, 
and interpolation.  

TEPs also generates emissions for all roads in Toronto. For this purpose, AADT values on each road 
segment were multiplied by the length of the road to generate vehicle kilometers traveled (VKT), which 
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were then multiplied by the corresponding emission factors to obtain emissions. Emission factors for NOx 
were derived from the US EPA model MOVES (Motor Vehicle Emission Simulator) calibrated to reflect 
local conditions. 

 
4.4. TREND ANALYSIS 

Using the long-term traffic volumes and emissions derived for each road, we conducted a trend 
analysis to identify the roads that experienced significant changes from those that did not exhibit significant 
trends. This is important because traffic varies both spatially and temporally, and while citywide total traffic 
counts or emissions may exhibit linear trends over time, certain neighborhoods may exhibit sharp changes 
as a result of changes in population and employment. We employed the Mann-Kendall and Sen’s slope 
estimators, two nonparametric methods to detect trends for every road segment in Toronto. 
 
Mann-Kendall Test 

The nonparametric Mann-Kendall3,4 is used to quantify the significance of trends in time series5,6 
with a test statistic 𝑍𝑍𝑆𝑆, which is estimated using Equation (1). Positive and negative 𝑍𝑍𝑆𝑆 indicate increasing 
and decreasing trends, respectively. For statistical testing of the trend, 𝑍𝑍𝑠𝑠 is compared with a value obtained 
from standard normal distribution at the specific α significance level.  
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where statistic S is estimated as follows: 
 
𝑆𝑆 = ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖)𝑛𝑛
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where 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖  are the difference between data values in time series 𝑖𝑖 and 𝑗𝑗 (𝑗𝑗 >  𝑖𝑖), 𝑠𝑠 is the number of 
datasets, and 𝑠𝑠𝑠𝑠𝑠𝑠() is the sign function, which is +1, −1, 0 for the case that 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖 is bigger, smaller, and 
equal to zero, respectively. The variance in Equation (1) is computed as follows:  
 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) = 𝑛𝑛(𝑛𝑛−1)(2𝑛𝑛+5)−∑ 𝑡𝑡𝑖𝑖(𝑡𝑡𝑖𝑖−1)(2𝑡𝑡𝑖𝑖+5)𝑚𝑚

𝑡𝑡=1
18

 (3) 
where 𝑚𝑚 and 𝑡𝑡𝑖𝑖 are the number of tied groups (set of sample data with the same value) and ties of extent 𝑖𝑖, 
respectively. A significance level of α = 0.05 was used in this study. 
 
Sen’s Slope Estimator 

For a given time series of any variable x, Sen’s slope,7 which is a nonparametric trend analysis, is 
determined as follows: 
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where 𝑄𝑄𝑖𝑖 is determined as follows: 
 
𝑄𝑄𝑖𝑖 = 𝑥𝑥𝑗𝑗−𝑥𝑥𝑘𝑘

𝑗𝑗−𝑘𝑘
             𝑖𝑖 = 1, … ,𝑁𝑁 (5) 
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where 𝑗𝑗 and 𝑘𝑘 represent times 𝑗𝑗 and 𝑘𝑘 (𝑗𝑗 >  𝑘𝑘), respectively. 𝑁𝑁 is the number of 𝑄𝑄⬚ values and is 
determined using the number of time steps and observations 𝑠𝑠(𝑠𝑠 − 1)/2. The confidence level of 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 at 
significance levels of 𝑉𝑉 can be estimated using Equation (6): 
 
𝐶𝐶𝑉𝑉  =  𝑍𝑍1−𝑎𝑎2

 �𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠)⬚  (6) 
 
where 𝑍𝑍1−𝑎𝑎2

 can be extracted from a standard normal distribution with significance levels of 𝑉𝑉 and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) 
was introduced in Equation (3).  
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5. FIXED-SITE MONITORING 
Fixed-site monitoring campaigns were conducted for 2 weeks in each city during summer 2021 

(June 2021 for Montreal and July 2021 for Toronto). Fixed-site monitoring locations were selected to 
overlap with the locations of mobile-monitoring routes, which were designed to capture variations in land 
use and traffic characteristics across each city, as described previously. In Montreal, 64 sites were 
successfully monitored for NO2, 68 for O3, 0 for BC, and 18 for UFPs. In Toronto, 57 sites were 
successfully monitored for NO2, 56 for O3, 55 for BC, and 21 for UFPs. Data from additional fixed sites 
were discarded due to monitor errors and failures. Outdoor NO2/O3 data were collected using Ogawa 
passive samplers with subsequent analysis by ion chromatography. Blanks (n = 31 for NO2; n = 10 for 
O3), and duplicate samples (n = 12) were also collected for NO2/O3.  

Fixed-site BC measurements were collected at the same locations as NO2/O3 measurements using 
UPAS monitors with 37-mm Teflon filters. UPAS monitors were operated at 75% duty cycle at 1 L/min 
(i.e., sampling for 45 of every 60 seconds); monitors were located in a weather-proof case and were 
attached to two external batteries, which were in turn charged by a solar panel. After the 2-week 
monitoring period, BC concentrations were measured using a Sootscan Model OT21 Transmissometer 
(880 nm). Finally, fixed-site UFP measurements were collected using the same instruments described 
earlier for mobile monitoring and were located at different locations than those used for BC/NO2/O3 
because the UFP monitors required access to electricity to operate over the entire 2-week period. 
Locations for UFP monitors were selected to be as close as possible to locations used for BC/NO2/O3. The 
descriptive data results for fixed-site monitoring are shown in Table A.2. 
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