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APPENDIX A: Supplementary Tables A.1-A.16 and
Figures A.1-A.59

APPENDIX A TABLES

Table A.1. Study Area Characteristics
Study Population  Area Maximum January/July Mean Annual Mean Relative
Area Elevation  Mean Low/High  Precipitation Humidity
Montreal 1.9 million 472 km> 233 m —14°C/+26°C 1,000 mm 60%
Toronto 2.9 million 630km?> 209 m —7°C/+27°C 831 mm 61%

Table A.2. Fixed-Site Monitoring Results

City and Pollutant n Mean (SD) Percentile
5th 50th 95th
Montreal®
UFP number 18 5,391 (899) 4,358 5,442 6,609
(particles/cm?)
UFP size (nm) 18 49.6 (6.4) 39.9 50 57.5
NOz (ppb) 64 3.0 (1.3) 1.2 2.8 7.9
O; (ppb) 68 343 (3.4) 29.9 33.9 41.5
Toronto
UFP number 21 4,887 (1,602) 2,626 4,705 7,099
(particles/cm?)
UFP size (nm) 21 49.0 (5.3) 383 50.8 55.8
BC (ng/m®) 53 3662 (1015) 2,069 3,532 5,579
NOz (ppb) 57 6.7 (2.4) 3.5 6.3 10.5
O3 (ppb) 56 30.1(3.7) 25.6 29.5 37.3

BC = black carbon; NO» = nitrogen dioxide; O3 = ozone; SD = standard deviation; UFP = ultrafine particles.
aFixed-site black carbon data were not collected in Montreal because of instrument failure.

Table A.3. Instrument Limits of Detection

Instrument . Reported Time
(Manufacturer) S LLEE UL Accuracy Resolution

DiSCmini (Testo) ~ UFP number 10°-10° particles/cm? +30% 1 sec

UFP size 10-300 nm +30% 1 sec
Partector 2 UFP number 0-10° particles/cm? £30% 1 sec
(Naneos) UFP size 10-300 nm +30% 1 sec
MA350 BC 30-10° ng/m? +100 ng 1 sec
(microAeth)

BC = black carbon; UFP = ultrafine particles.



Table A.4. Locations Used for Hourly Ambient Weather Conditions

Study Area Station Code Station Name Longitude Latitude
Montreal CYUL Pierre Elliot Trudeau Intl —73.7414 45.4683
Toronto® CYYZ Lester B Pearson Intl —79.6306 43.6772
Toronto? CYTZ Toronto City Center —79.3950 43.6286

2The mean value from the two Toronto stations was used.

Table A.5. Land Use and Traffic Parameters Examined for LUR Model Development
Variable Source (Year)
Average daily traffic NOx emissions within buffer (grams) EMME + MOVES (2020)

Average daily traffic volume within buffer (#) EMME (2020)

Building land use area within buffer (m?) DMTI (2013)

Length of bus routes within buffer (m) gig gg %(;ggfjl(%gé?)
Number of bus stops within buffer (#) gig gg %(;ggfjl(%gé?)
Commercial land use area within buffer (m?) DMTI (2013)
Governmental land use area within buffer (m?) DMTI (2013)

Length of highways within buffer (m) DMTI (2013)

Industrial land use area within buffer (m?) DMTI (2013)

Length of major roads within buffer (m) DMTI (2013)

Number of intersections within buffer (#) g:g gtt: %Orz;rf:l(éégég)
Number of NPRI NOy sources within buffer (#) NPRI (2014)

Number of NPRI PM sources within buffer (#) NPRI (2014)

Open area within buffer (m?) DMTI (2013)

Park area within buffer (m?) DMTI (2013)
Population living within buffer (# people) Statistics Canada (2011)
Length of railroad within buffer (m) DMTI (2013)
Residential land use area within buffer (m?) DMTI (2013)

Number of restaurants within buffer (#) Google (2018)

Length of roads within buffer (m) DMTI (2013)

Total traffic NOx emissions within buffer (grams) EMME + MOVES (2020)
Total traffic count within buffer (#) EMME (2020)
Waterbody area within buffer (m?) DMTI (2013)

Distance to nearest airport (m) DMTI (2013)

Distance to nearest bus stop (m) gig gg %(;ggtejl(%gé?)
Distance to nearest highway (m) DMTI (2013)

Distance to nearest major road (m) DMTI (2013)

Distance to nearest NPRI NOy source (m) NPRI (2014)

Distance to nearest NPRI PM source (m) NPRI (2014)

Distance to nearest port (m) World Port Index (2019)
Distance to nearest rail (m) DMTI (2013)

Distance to nearest shore (m)

Statistics Canada (2011)

LUR = land use regression; MOVES = Motor Vehicle Emission Simulator; NOx = nitrogen oxides; NPRI = National
Pollutant Release Inventory; PM = particulate matter.



Table A.6. Comparison of Descriptive Statistics for Road Segments Visited Various Number of
Times During Monitoring Campaign®

Visits UFP Number

per (particles/em’) UFP Size (nm) BC (ng/m?)
City SR"ad , Median  5th-95th Median  5th-95th Median  5th-95th
eg(r’:l)en (IQR) percentile (IQR) percentile (IQR) percentile
Toronto n>10 15,831 7,265— 33.8(5.8) 25.6-44.0 1,099 (933) 569-2,738
(12,255) 38,695
n=>6 15,791 7,231- 33.8(7.1) 23.3-44.0 1,155 441-3,145
(12,798) 48,952 (1,034)
6>n>1 17,849 5,017—- 33.9 20.3-50.6 1,339 198-4,885
(22,385) 79,049 (11.3) (1,352)
n=1 16,621 3,261- 34 (17.4) 18.0-554 1,082 15-3,963
(21,524) 92,723 (1,353)
Montreal »n>10 16,030 5,220 29.1(9.1) 19.8-43.0 1,189 291-2,861
(14,551) 46,609 (1,127)
n=>6 15,141 4913— 29.6 19.0-45.1 1,083 257-2,871
(13,693) 46,700 (10.0) (1,106)
6>n>1 12,034 2,923~ 31.5 17.0-54.0 854 (942) 101-3,116
(11,667) 47,130 (15.0)
n=1 8,181 1,713— 343 16.0-65.0 675 (1,091) 15-3,024
(10,603) 39,895 (25.2)

BC =Dblack carbon; IQR = interquartile range; UFP = ultrafine particles.
2All models were developed using data from road segments visited six or more times (n > 6).

Table A.7. Comparison of Land Use and Traffic Parameters for Road Segments Visited Various
Number of Times During Monitoring Campaign®

Median Traffic or Land Use Within 100 m WD I EEs

Visits per Feature
. Road . Number NPRI
Ci Segment NOX BORGL e ey (e Residential of bus PM:s  Highway
emissions length length area 2
(n) (@ i) i) (m?) area (m®) stops source (m)
(m?) (m)
Toronto n>10 86 668 339 8,120 11,051 0.93 2,024 966
n>6 79 690 342 8,138 12,300 0.95 1,995 871
6>n>1 78 725 380 8,983 13,173 0.98 2,032 1,005
n=1 49 607 225 5,811 15,670 1.03 2,261 1,262
Montreal n>10 111 886 414 10,399 12,173 1.1 1,600 403
n>6 95 851 377 9,787 12,307 1.09 1,532 515
6>n>1 47 755 240 6,882 14,258 1.45 1,285 527
n=1 21 632 83 3,728 18,739 1.4 1,751 891

NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM» s = particulate matter <2.5 pm in
aerodynamic diameter.

2All models were developed using data from road segments visited six or more times (7 > 6). The land use and
traffic parameters in this table were selected because they had the strongest associations with UFP and BC (i.e., the
lowest MSE in univariable regressions).



Table A.8. Model RMSE in Test Set?

. RMSE in Test Set
City Pollutant LUR CNN Combined

Montreal
UFP number (particles/cm?) 0.450 0.495 0.442
UFP size (nm) 6.245 6.631 6.165
BC (ng/m’) 0.458 0.514 0.457

Toronto
UFP number (particles/cm?) 0.367 0.394 0.358
UFP size (nm) 4.054 4.622 4.050
BC (ng/m?) 0.360 0.387 0.346

BC = black carbon; CNN = convolutional neural network; LUR = land use regression; RMSE = root mean square
error; UFP = ultrafine particles.
2UFP number concentration and BC were log-transformed for model development.

Table A.9. Pearson Correlation Between LUR and CNN Model Predictions in Test Set

City Pollutant Pearsons r
Montreal UFP number (particles/cm?) 0.80
UFP size (nm) 0.83
BC (ng/m?) 0.77
Toronto UFP number (particles/cm?) 0.86
UFP size (nm) 0.82
BC (ng/m?) 0.83

BC =Dblack carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.

Table A.10. Comparison of Model Performance When Trained on City-Specific Data versus Multi-
city Data®

R? in Test Set
City Pollutant LUR CNN Combined
City-  Multi- City-  Multi- City-  Multi-

specific city specific city specific city

Montreal UFP .numbers 0.59 054 049 0.47 0.60 0.55
(particles/cm?)

UFP size (nm) 0.48 0.44 041 0.38 0.49 0.46

BC (ng/m?) 0.58 0.58 0.50 0.49 0.60 0.58

Toronto UFP .numbers 071 062 0.66 0.63 073 0.69
(particles/cm?)

UFP size (nm) 0.56 0.38 0.43 0.39 0.55 0.43

BC (ng/m%) 0.60 0.49 0.53 0.51 0.61 0.59

BC = black carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
20One model was trained on data pooled from both cities.



Table A.11. Comparison of LUR Model Performance with and without Temporal Adjustment®

LUR Model R?* in Test Set
Temporal Temporal No temporal
City Pollutant adjustment in adjustment in adjustment
training set validation set (sensitivity
(primary (sensitivity analysis)
analysis) analysis)
Montreal ~UFP number 0.60 0.59 0.57
(particles/cm?) )
UFP size (nm) 0.48 0.46 0.41
BC (ng/m°) 0.58 0.58 0.56
Toronto ~ UFP number 0.71 0.70 0.70
(particles/cm?) )
UFP size (nm) 0.56 0.50 0.51
BC (ng/m?) 0.60 0.57 0.55

BC =black carbon; LUR = land use regression; UFP = ultrafine particles.

*Temporal adjustment was conducted in the training data set during training and in the validation set after training
(as was done with the CNN models). Comparison showed only a small change in model performance, which
suggests that there was only a small degree of weather-related temporal variation in the aggregated monitoring data.

Table A.12. Comparison of CNN Model Performance with and without Temporal Adjustment in
Validation Set®

CNN Model R? in Test Set
City Pollutant Temporal adjustment No temporal adjustment
in validation set (sensitivity analysis)
(primary analysis)
Montreal UFP number (particles/cm?®) 0.49 0.45
UFP size (nm) 0.41 0.36
BC (ng/m?) 0.50 0.47
Toronto UFP number (particles/cm?®) 0.66 0.68
UFP size (nm) 0.43 0.43
BC (ng/m?) 0.53 0.51

BC = black carbon; CNN = convolutional neural network; UFP = ultrafine particles.
?Comparison showed only a small change in model performance, which suggests that there was only a small degree
of weather-related temporal variation in the aggregated monitoring data.



Table A.13. Median Difference Between LUR and CNN Predicted Values in Test Set

Pollutant Montreal Toronto
Mean difference (95% CI) Mean difference (95% CI)
UFP number (particles/cm?) (-17,070.19,
271.24 (—5,469.1, 12,175.44) —2,231.83 6,113.85)
UFP size (nm) —0.41 (-6.29, 6.31) 0.79 (-3.49, 5.44)
BC (ng/m?) 22.07 (—369.19, 976.72) =51.12 (=745.15, 781.05)

BC = Dblack carbon; CI = confidence interval; CNN = convolutional neural network; LUR = land use regression;
UFP = ultrafine particles.

Table A.14. Median Difference Between LUR and CNN Predicted Values in Test Set for Road
Segments When Observed Aggregated UFP Number Concentration Was Greater than 45,000
particles/cm®

Pollutant Median Difference (Sth, 95th percentile)
Montreal Toronto
UFP number (particles/cm?) 8,724 (3,368, 25,943) —5871 (—29,269, 10,550)
UFP size (nm) —4.71 (-11.02, 1.16) 1.23 (—3.45,4.76)
BC (ng/m?) 323 (263, 1,248) =157 (-929, 788)

BC = black carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
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Table A.15. Slope and Intercept of Predictions versus Observed Values in Test Set

Pollutant Model Parameter Montreal Toronto
Estimate (95% CI) Estimate (95% CI)
UFP number 0.73 (0.30, 1.15) —-0.29 (-0.69,
(particles/cm?) LUR Intercept 0.12)
Slope 0.92 (0.88, 0.96) 1.03 (0.99, 1.08)
—0.87 (—1.48, 0.21 (-0.22,
CNN Intercept —-0.25) 0.63)
Slope 1.09 (1.03, 1.16) 0.97 (0.93, 1.01)
Combined Intercept —0.40 (—0.87, 0.08) 0.65 (0.3, 1.00)
Slope 1.04 (0.99, 1.09) 0.93 (0.89, 0.96)
UFP size (nm) 3.23 (1.48,4.98) 0.64 (—1.22,
LUR Intercept 2.50)
Slope 0.90 (0.85, 0.96) 0.98 (0.93, 1.03)
—6.79 (—9.47, 4.92 (2.82,7.02)
CNN Intercept —4.12)
Slope 1.21 (1.13, 1.29) 0.88 (0.81, 0.94)
—5.14 (=7.33, 1.73 (-0.11,
Combined Intercept —2.96) 3.57)
Slope 1.15(1.09, 1.22) 0.96 (0.91, 1.02)
BC (ng/m?) LUR Intercept 0.51 (0.20, 0.82) 0.61 (0.25, 0.96)
Slope 0.93 (0.89, 0.98) 0.92 (0.87, 0.97)
—0.47 (—0.90, 0.57 (0.16, 0.98)
CNN Intercept —=0.05)
Slope 1.08 (1.02, 1.14) 0.92 (0.87, 0.98)
—0.44 (—0.78, 0.77 (0.44, 1.10)
Combined Intercept —-0.09)
Slope 1.07 (1.02, 1.12) 0.90 (0.85, 0.94)

BC = Dblack carbon; CI = confidence interval; CNN = convolutional neural network; LUR = land use regression;
UFP = ultrafine particles.

Table A.16. Hazard Ratios for Interquartile Increases in O, Exposures and Mortality*

Hazard Ratio (95% CI)
Cause of Mortality 0O,

(per 4.51 ppb)

Nonaccidental 1.025 (1.015, 1.035)
Cardiovascular 1.049 (1.029, 1.069)
Cardiometabolic 1.048 (1.029, 1.067)

Ischemic heart disease 1.083 (1.056, 1.111)
1.028 (0.985, 1.073)
1.048 (1.013, 1.084)

0.976 (0.945, 1.008)

Cerebrovascular
Respiratory

Lung cancer

CI = confidence interval; Ox = ozone.
2All models included sociodemographic variables and residential exposure to PM» s, BC, UFP number concentration,
and UFP size.
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APPENDIX A FIGURES

Figure A.1. Mobile monitoring routes in Montreal (A) and Toronto (B).

A B

&

mlalwlml—t

L >

E 3/&3 m )6

14

7
g
9

Figure A.2. Maps of the training, validation, and test sets in Toronto and Montreal.
Model development data were split by geohash code (precision 6) to increase the spatial independence of
the test set.
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Figure A.3. Directed acyclic graphs for the relationships between outdoor UFP number
concentrations (A) and black carbon (B) and mortality.

Shaded boxes indicate variables included as covariates or strata variables in the analysis. SES =
socioeconomic status; UFP = ultrafine particles.
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Figure A.4. Spatial coverage of the Montreal UFP number concentrations monitoring data when
restricting the minimum number of visits per road segment.
UFP = ultrafine particles.
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Figure A.5. Spatial coverage of the Toronto UFP number monitoring data when restricting the
minimum number of visits per road segment.
UFP = ultrafine particles.
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Figure A.6. Spearman’s correlations between land use and traffic parameters included in the
Montreal LUR for UFP number concentrations.

A criterion for variable selection was a Spearman’s » < 0.7 with other variables in the model. LUR = land
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate
matter; UFP = ultrafine particles.
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Figure A.7. Spearman’s correlations between land use and traffic parameters included in the
Montreal LUR model for UFP size.

A criterion for variable selection was a Spearman’s » < 0.7 with other variables in the model. LUR = land
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate
matter; UFP = ultrafine particles.
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Figure A.8. Spearman’s correlations between land use and traffic parameters included in the
Montreal LUR for BC.

A criterion for variable selection was a Spearman’s » < 0.7 with other variables in the model. BC = black
carbon; LUR = land use regression; NOy = nitrogen oxides; NPRI = National Pollutant Release Inventory;
PM = particulate matter.
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Figure A.9. Spearman’s correlations between land use and traffic parameters included in the
Toronto LUR for UFP number concentrations.

A criterion for variable selection was a Spearman’s » < 0.7 with other variables in the model. LUR = land

use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate
matter; UFP = ultrafine particles.
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Figure A.10. Spearman’s correlations between land use and traffic parameters included in the
Toronto LUR model for UFP size.

A criterion for variable selection was a Spearman’s » < 0.7 with other variables in the model. LUR = land
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate
matter; UFP = ultrafine particles.
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Figure A.11. Spearman’s correlations between land use and traffic parameters included in the
Toronto LUR for BC.

A criterion for variable selection was a Spearman’s » < 0.7 with other variables in the model. LUR = land
use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory; PM = particulate
matter.
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Figure A.12. Maps of spatial variation in median meteorological conditions during monitoring for
Montreal (A: temperature; B: relative humidity; C: wind speed) and Toronto (i: temperature; ii:
relative humidity; iii: wind speed).
The monitoring campaign was designed to have a temporal balance between monitoring routes, but there
were chance imbalances that can be seen in the spatial variation in meteorological conditions during
monitoring. To account for the imbalances, models included temporal adjustments.
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Figure A.13. Relationships between meteorological variables and changes in pollutant levels in each
of the Montreal LUR models.

UFP number concentrations and BC were log-transformed for model training; UFP size was not. Each
plot includes a rug to show the distribution of the median meteorological values for the training sites. BC
= black carbon; LUR = land use regression; UFP = ultrafine particles.
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Figure A.14. Relationships between meteorological variables and changes in pollutant levels in each
of the Toronto LUR models.
UFP number concentrations and BC were log-transformed for model training; UFP size was not. Each

plot includes a rug to show the distribution of the median meteorological values for the training sites. BC

= black carbon; LUR = land use regression; UFP = ultrafine particles.
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Figure A.15. Comparing test set LUR mean UFP size predictions to CNN predictions in Montreal
and Toronto (A) with a histogram of observed values for reference (B).
The median difference in predicted mean UFP size between the Montreal LUR and Montreal CNN was
—0.4 nm (5th-95th quantile: —6.29 to 6.31). For Toronto, the median difference was 0.8 nm (5th—95th
quantile: —3.49 to 5.44). Pearson correlation coefficient of the LUR and CNN model predictions was 0.83

for Montreal and 0.82 for Toronto. CNN = convolutional neural network; LUR = land use regression;

UFP = ultrafine particles.
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Figure A.16. Comparing test set LUR BC predictions to CNN predictions in Montreal and Toronto

(A) with a histogram of observed values for reference (B).

Similar to the UFP number concentration models, for the highest BC concentrations (e.g., near 2,500

ng/m?), the Montreal CNN predictions appeared to the systematically lower than the Montreal LUR

predictions. Unlike the UFP number concentration models, there was no similar contrast for Toronto. The
mean difference in predicted BC concentration between the Montreal LUR and Montreal CNN was 22
ng/m? (5th-95th quantile: =369, 977). For Toronto, the mean difference was —51 ng/m? (5th-95th
quantile: —745, 781). The Pearson correlation coefficient of the LUR and CNN model predictions was
0.77 for Montreal and 0.0.83 for Toronto. BC = black carbon; CNN = convolutional neural network; LUR
= land use regression; UFP = ultrafine particles.
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Figure A.17. Comparing LUR and CNN predictions of UFP number concentrations from the city-
specific model and the multi-city models.
The multi-city CNN model (trained on Toronto and Montreal; blue in panel B) generates fewer very high
predictions in Toronto compared to the city-specific CNN model trained in Toronto (blue in panel A).

Conversely, the multi-city CNN model (red in panel B) generates more very high predictions in Montreal

than the city-specific model trained on Montreal (red in panel A). The CNN model trained on only
Toronto data seems to be better at generating very high UFP number concentration predictions. The

multi-city CNN model trained on Toronto and Montreal data seems to generate slightly lower predictions
and the CNN model trained on only Montreal data generates even lower predictions. CNN =
convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
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Figure A.18. Comparing UFP number concentrations model predictions from the city-specific
models to the multi-city models.

The Montreal CNN (panel A) generates higher predictions when trained on both Toronto and Montreal
data (i.e., the multi-city model). The Toronto CNN (panel C) generates higher predictions when trained
on only Toronto data (i.e., the city-specific model). CNN = convolutional neural network; LUR = land
use regression; UFP = ultrafine particles.
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Figure A.19. Observed UFP number concentrations over 40,000 particles/cm® in Toronto are all
situated on highways.

In Toronto, the city-specific CNN model trained on Toronto data generally generated higher predictions
than the multi-city CNN model trained on both Montreal and Toronto data. CNN = convolutional neural
network; UFP = ultrafine particles.
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Figure A.20. Observed UFP number concentrations over 40,000 particles/cm® in Montreal are all
situated on highways.

In Montreal, the city-specific CNN model trained on Montreal data generally generated lower predictions
than the multi-city CNN model trained on both Montreal and Toronto data. CNN = convolutional neural
network; UFP = ultrafine particles.
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Figure A.21. Visualizing intermediate activations of filters of the Conv2D layer in the CNN models
trained on Toronto data and trained on Montreal and Toronto data.

Filters were visualized while the model generated a prediction on a single picture in Toronto. This kind of
visualization can provide clues about what features are important for generating a prediction. The
majority of the filters of the two models were virtually identical, but one was slightly different and has
been enlarged in the figure. Notice the dark pavement in the upper part of the original picture. Panel A
shows the city-specific model giving greater importance (i.e., lighter color) to the dark pavement than the
multi-city model in panel B. A possible explanation is that the dark pavement was freshly laid asphalt on
this major highway running through Toronto. When the model was trained on Toronto data only, the
CNN model may have learned to associate dark pavement with very high UFP number concentrations.
Conversely, when the model was trained on Montreal and Toronto data, there may have been relatively
little fresh asphalt on Montreal highways and thus weaker associations between very high UFP number
concentrations and dark pavement in the training dataset. CNN = convolutional neural network; UFP =
ultrafine particles.
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Figure A.22. Scatter plots of observed and predicted UFP number concentrations in the test set.
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
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Figure A.23. Scatter plots of observed and predicted mean UFP size in the test set.

CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
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Figure A.24. Scatter plots of observed and predicted BC in the test set.
BC = black carbon; CNN = convolutional neural network; LUR = land use regression.

Montreal Montreal Montreal
LUR CNN Combined
5000 4 A 50004 vv vr ¥ 5000 1 seen
ry \L 4 14 ® n X
v o 09
2500 1 25004 - /, 25004 o o
v o &
1200 4 1200 1 v 1200 1
A ‘ # v vﬁ u. -
a ey A A v -
£ 5001 3 500 . 500
£ % aja Vo ° . 2 o?‘
c rde ¥ v A v v v ] °
=] o AR, AT, Yo v Vy s .
B 2001, s A y ; 0 -x¥ g ! | 200U, aole ; : : Model
€ 200 500 1200 2500 5000 200 500 1200 2500 5000 200 500 1200 2500 5000
@ <4 LUR
e Toronto Toronto Toronto
S ~r- CNN
o LUR CNN Combined
8 - - ¥ 2 - + &  Combined
5000 e 5000 v 5000 4
A ¥ .,
g 4 GYVR o vond.
@ 2500 1 a—4 2500 4 V 2500 e %
a : v
O 1 @ v v L [
1200 1 e 12004 2 12004 o
v L ]
& . v¥v ° ]
,f o S v y g e
< - - e E #,
500 & N \ & 500 v ’, %vﬂ: vv 500 ._" 2 .:o °
44 abaa “ viwy ¥V o oo
At 'y YV b ®
200 4 dy 2004 ¥ 2004 —
200 500 1200 2500 5000 200 500 1200 2500 5000 200 500 1200 2500 5000

Predicted BC Concentration (ng/m?)

33



Figure A.25. Identifying the clusters of Toronto LUR UFP number concentration predictions in the
test set. The colors indicate the LUR prediction clusters.
There was less distinct clustering in the CNN predictions, and the LUR prediction clusters are somewhat

mixed in the CNN predictions. CNN = convolutional neural network; LUR = land use regression; UFP =
ultrafine particles.
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Figure A.26. Inspecting the Toronto LUR UFP number concentration prediction clusters in the test,
train and validate sets.

The pronounced clustering with empty space between the clusters observed in the test set was not
observed in the training set. The validate set appeared to have two instead of three clusters. This suggests
that the clustering may be partially due to chance of the random data split as well as the spatial structure
imposed on the data split. LUR = land use regression; UFP = ultrafine particles.
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Figure A.27. Identifying the locations of the LUR UFP number concentration prediction clusters.
The cluster colors are the same as in Figure A.26. The red clusters appear on major highways, especially
near intersecting highways. The yellow cluster appears on or near highways and the green cluster is
mostly off. LUR = land use regression; UFP = ultrafine particles.
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Figure A.28. Inspecting distributions of land use and traffic parameters stratified by LUR UFP
number concentration prediction cluster.
These are the land use and traffic parameters in the Toronto UFP number concentration LUR. The

average daily traffic NOx emissions parameter is the most important variable in this model. Residential

area may have also contributed to the observed clustering. LUR =

oxides; UFP = ultrafine particles.
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Figure A.29. Average daily traffic NOy response curves in the Toronto BC and UFP number
concentration LUR models.

The BC concentration-response curve flattens at very high levels of average daily traffic NOy, which is
likely why there was less pronounced clustering in the BC concentration prediction scatterplots. The
response curve in the UFP number concentration model continues to increase at very elevated levels of
average daily traffic NOx, which was likely on major highways. BC = black carbon; GAM = generalized
additive model; LUR = land use regression; NOy = nitrogen oxides; UFP = ultrafine particles.
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Figure A.30. Spatial distribution of UFP number concentrations model errors (scaled) in all data
for the LUR, CNN, and combined models in Toronto and Montreal.
Purple lines are major highways. A small amount of jitter was added to the points to improve visibility of
points. CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
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Figure A.31. Spatial distribution of UFP size model errors (scaled) in all data for the LUR, CNN,
and combined models in Toronto and Montreal.
Purple lines are major highways. A small amount of jitter was added to the points to improve visibility of
points. CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
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Figure A.32. Spatial distribution of BC model errors (scaled) in all data for the LUR, CNN, and
combined models in Toronto and Montreal.
Purple lines are major highways. A small amount of jitter was added to the points to improve visibility of
points. BC = black carbon; CNN = convolutional neural network.
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Figure A.33. Surfaces of scaled differences between predicted UFP number concentrations from

LUR and CNN models in Toronto and Montreal.

Red indicates areas where the LUR predicted higher than the CNN, and blue indicates areas where the
CNN predicted higher than the LUR. The color along major highways differs between the two cities, with
the LUR predicting higher in Montreal and the CNN predicting higher in Toronto. CNN = convolutional

neural network; LUR = land use regression; UFP = ultrafine particles.
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Figure A.34. Surfaces of scaled differences between predicted UFP size from LUR and CNN models

in Toronto and Montreal.
Red indicates areas where the LUR predicted higher than the CNN, and blue indicates areas where the

CNN predicted higher than the LUR. CNN = convolutional neural network; LUR = land use regression;
UFP = ultrafine particles.
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Figure A.35. Surfaces of scaled differences between predicted BC concentrations from LUR and

CNN models in Toronto and Montreal.
Red indicates areas where the LUR predicted higher than the CNN, and blue indicates areas when the

CNN predicted higher than the LUR. BC = black carbon; CNN = convolutional neural network; LUR =
land use regression.
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Figure A.36. Sensitivity analysis for UFP number concentrations prediction surfaces from LUR
models trained without latitude and longitude for Toronto and Montreal.
LUR = land use regression; UFP = ultrafine particles.
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Figure A.37. Sensitivity analysis for UFP size prediction surfaces from LUR models trained without
latitude and longitude for Toronto and Montreal.
LUR = land use regression; UFP = ultrafine particles.
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Figure A.38. Sensitivity analysis for BC prediction surfaces from LUR models trained without
latitude and longitude for Toronto and Montreal.
BC = black carbon; LUR = land use regression.
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Figure A.39. CNN predictions for UFP number concentrations in Montreal for original and
modified images.

Original images (A) have parts of images added (B) to produce modified images (C) with the expectation that the
CNN prediction from the original image will become more similar to that of the added image after modification.
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.

A) Original Image B) Image to Add C) Modified Image
Combined UFP  LUR UFP CNN UFP CNN UFP CNN UFP
Example Number Longitude Latitude Prediction’  Prediction’ Image Prediction’ Image Prediction’ Image Prediction’ CNN Behaviour?

Golf Course Near Railroad and Major Highway

1 -73.556828 45.62537 13269 21348 . 8214 34008 . 8710 as expected
2 -73.565828 45.62537 13269 21349 8214 34008 28165 as expected
3 -73.55828 45.62537 13269 21349 - 8214 S 35882 a107 unexpected
4 -73.55828 45.62537 13269 21349 . 8214 s 35882 27701 as expected
Residential Area Near Main Rail Yard
5 -73.67662 45.46140 16032 23126 . 12674 19539 13066 as expected
6 -73.67662 45.46140 16032 23126 . 12674 19539 158916 as expected
¥ -73.67662 45.46140 16032 23126 . 12674 19539 { 15258 as expected
8 -73.67662 45.46140 16032 23126 . 12674 1l 22234 . 14676 as expected
Residential and Agricuitural Area Near Major Highway
] -73.93498 45.42213 8829 9679 - 7935 . 25250 . 20647 as expected
10 -73.93498 45.42213 8829 9679 . 7935 . 25259 . 10806 unexpected
11 -73.83498 45.42213 8828 9679 . 7935 . 11410 . 7490 as expected
12 -73.93300 45.42833 8730 8383 . 11410 . 25259 . 26485 as expected
Open Area Near Airport
13 -73.76786 45.46963 8898 8843 10590 16845 e 14079 as expected
=
14 -73.76041 45.46745 7027 7281 6631 = 16845 - 14270 as expected
e =
! [pt/em3)
2 Adding highways, industrial buildings, or railroads to images of resi or ped areas was exp to increase the p 1. Adding ped areas to

areas was expected to reduce predicted concentrations.




Figure A.40. CNN predictions for BC in Montreal for original and modified images.
Original images (A) have parts of images added (B) to produce modified images (C) with the expectation

that the CNN prediction from the original image will become more similar to that of the added image

after modification. BC = black carbon; CNN = convolutional neural network; LUR = land use regression.

Example Number Longitude Latitude

Golf Course Near Raifroad and Major Highway

1 -73.65828 45.62537

2 -73.55828 45.62537
3 ~73.55828 45.62537
4 -73.55828 45.62537

Residential Area Near Main Rail Yard

5 -73.67662 4546140
] ~T3.67662 45.46140
7 -73.67662 45.46140
8 -73.67662 45.46140

A) Original Image

Residential and Agricultural Area Near Major Highway

9 -73.93498 45.42213

10 -73.93498 45.42213

1 -73.83498 4542213

12 -73.93309 4542833
Open Area Near Airport

13 -73.76786 45.46963

14 ~T3.76041 4546745
! (rg/m3)

2 Adding highways, industrial buildings, or railroads to images of

areas was expected to reduce predicted concentrations.

B) Image to Add

C) Modified Image

Combined BC LURBC CNN BC CNN BC CNN BC
Prediction’  Prediction’ Image Prediction’ Image Prediction’ Image Prediction” CNN Behaviour®
635 948 3324 . 446 as expected
635 948 - _ 2190 as expected
635 948 . 414 1907 . 278 unexpected
635 948 . 414 1907 as expected
1202 1609 . 694 unexpected
1202 1609 . 694 as expected
1202 1609 . 694 1872 as expected
1202 1609 . 694 . 1175 as expected
445 430 . ara . 882 as expected
445 430 . ara . 477 unexpected
445 430 - 378 . 614 unexpected
383 347 . 437 . Td4 as expected
365 354 . 425 708 as expected
s >
314 256 . 365 as expected
or areas was to increase the 1. Adding areas to
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Figure A.41. CNN predictions for UFP number concentrations in Toronto for original and modified
images.

Original images (A) have parts of images added (B) to produce modified images (C) with the expectation that the
CNN prediction from the original image will become more similar to that of the added image after modification.
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.

Original Image Image to Add Modified Image
Combined UFP  LUR UFP CNN UFP CNN UFP CNN UFP
Example Number Longitude Latitude Prediction’  Prediction’ Image Prediction’ Image Prediction’ Image Prediction” CMNN Behaviour?

Residential Area Near Major Highway

1 -79.57036 43.66969 15221 17663 10703 27470 as expected

2 -79.57036 43.66969 15221 17663 . 10703 34595 17167 as expected
Residential Area Near Rail Yard and Forest

3 -79.26103 43.80808 7223 9585 - 6799 17 10270 as expected

4 -79.26103 43.80808 7223 9585 - 6799 17711 14910 as expected

5 -79.26103 43.80808 7223 9585 6799 8318 6552 as expected
Riparian Park Near Major Road, Railroad, and School Parking Lot

6 -79.20411 43.75754 6419 9425 . 6140 18231 16107 as expected

7 -79.20411 43.75754 6419 9425 . 6140 18231 9788 as expected

8 -79.20411 43.75754 6419 9425 . 6140 18231 9576 as expected

9 -79.20411 43.75754 6419 9425 . 6140 18231 14946 as expected

10 -79.20411 43.75754 6419 9425 . 6140 18855 11004 as expected
Park with Dry Grass

11 -79.36191 43.72184 10495 10708 11032 12514 unexpected
! (ptfem3)
2 Adding hig s, I i ildings, or rai tc images of residential or undeveloped areas was toi the predi cor ions. Adding ped areas to residential
areas was exg ted to reduce predicted Combu'nng two parks was not expected to change the prediction.
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Figure A.42. CNN predictions for BC in Toronto for original and modified images.

Original images (A) have parts of images added (B) to produce modified images (C) with the expectation
that the CNN prediction from the original image will become more similar to that of the added image
after modification. BC = black carbon; CNN = convolutional neural network; LUR = land use regression.

Original Image Image to Add Modified Image
Combined BC LURBC CNN BC CNN BC CNN BC
Example Number Longitude Latitude  Prediction’  Prediction’ Image Prediction’ Image Pradiction’ Image Prediction’ CNN Behaviour?

Residential Area Near Major Highway

1 -79.57036 43.66969 1064 1046 781 2751 1312 as expected

2 -79.57036 43.66969 1064 1046 . 781 2751 1795 as expected
Residential Area Near Rail Yard and Forest

3 -79.26103 43.80808 79 766 - 665 unexpected

4 -79.26103 43.80808 791 766 - 665 as expected

5 -79.26103 43.80808 79 766 - 665 672 647 as expected
Riparian Park Near Major Road, Railroad, and School Parking Lot

[ -79.20411 43.75754 805 895 . 509 1275 1218 as expected

7 -79.20411 43.75754 805 895 . 509 1275 as expected

8 -79.20411 43.75754 805 895 . 509 1275 as expected

9 -79.20411 43.75754 805 895 . 509 1275 1143 as expected

10 -79.20411 43.75754 805 89S as expected
Park with Dry Grass

1 -79.36191 43.72184 1197 1084 unexpected
" (ng/m3)
2 Adding hig s, I i ildings, or rai to images of residential or undeveloped areas was toi the p cor ions. Adding ped areas to residential
areas was exg ted to reduce predicted i Combu'nng two parks was not expected to change the prediction.

47



Figure A.43. Changes in CNN predictions for UFP number concentrations when using images of
Sunnybrook Park in Toronto downloaded in December 2021 versus July 2022.
Google does not provide information on when a satellite image is captured, but it is clear that the Google
Maps images were updated at some point in 2022. The updated images are greener than the images used
to develop the CNN models. It appears that the greener images have fewer long and straight edges (i.e.,
boundaries between green and brown grass), which may explain the generally lower CNN predicted UFP
PNC values. The CNN model may have learned to associate long straight edges (e.g., highways and
railroads) with higher levels of pollution. CNN = convolutional neural network; LUR = land use
regression; UFP = ultrafine particles.

Images Downloaded in 2021 Images Downloaded in 2022

Combined LUR UFP CNN UFP CNN UFP

Example Number Longitude Latitude UFP Prediction’ Prediction’ Image Prediction’ Image Prediction’  Prediction Change
1 -79.36191 43.72184 10495 10708 . 11032 . 9323 -1708
2 -79.36067 43.72184 12636 10623 . 19282 . 11980 -7312
3 -79.35943 43.72183 11498 10539 . 12725 . 12726 1
4 -79.35819 43.72183 10844 10457 € 11415 . 12683 1268
5 -79.35694 43.72183 10362 10429 i 11671 . 10725 -946
6 -79.35570 43.72183 11036 10408 - 12176 . 10618 -1558
7 -79.36439 43.72274 10551 10792 ' 11582 . 10411 -1171
8 -79.36315 43.72274 11755 10941 11527 11026 -501
9 -79.36191 43.72274 10314 10847 9786 9427 -359
10 -79.36067 43.72274 11336 10519 13873 12438 -1435
11 -79.35942 4372274 13262 10433 12514 11012 -1502

T (ptfem3)
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Figure A.44. Changes in CNN predictions for BC when using images of Sunnybrook Park in
Toronto downloaded in December 2021 versus July 2022.
BC = black carbon; CNN = convolutional neural network; LUR = land use regression.

Images Downloaded in 2021 Images Downloaded in 2022

Combined LURBC CNN BC CNN BC
Example Number Longitude Latitude BC Prediction’ Prediction’ Image Prediction” Image Prediction’  CNN Difference
1 -79.36191 43.72184 1197 1084 . 986 . 888 -98
2 -79.36067 43.72184 1158 1071 - 959 . 631 -328
3 -79.35943 43.72183 1150 1063 . 890 . 695 -195
4 -79.35819 43.72183 1109 1043 . 768 . 743 -25
5 -79.35694 43.72183 1124 1033 - 974 - 719 -255
6 -79.35570 43.72183 1035 1016 - 764 - 1001 237
7. -79.36439 43.72274 1006 1088 . 532 -91
8 -79.36315 43.72274 787 1063 210 358 148
9 -79.36191 43.72274 999 1039 768 744 -24
10 -79.36067 43.72274 1123 1039 807 670 -137
" -79.35942 4372274 1053 1026 1059 579 -480
’ (ng/m3)
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Figure A.45. Mobility-weighted combined models for UFP number concentrations in Toronto and
Montreal using neighborhood-level survey data from various years.
The unweighted surfaces are shown in the last row as a reference. UFP = ultrafine particles.
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Figure A.46. Mobility-weighted combined models for UFP size in Toronto and Montreal using
neighborhood-level survey data from various years.
The unweighted surfaces are shown in the last row as a reference. UFP = ultrafine particles.
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Figure A.47. Mobility-weighted combined models for BC in Toronto and Montreal using
neighborhood-level survey data from various years.
The unweighted surfaces are shown in the last row as a reference. BC = black carbon.
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Figure A.48. Change in Toronto combined model UFP number concentrations predictions after
applying 2006 and 2016 mobility weights.

Neighborhood border color indicates the neighborhood’s UFP number concentration tertile prior to
mobility weighting. Neighborhood area color indicates the change in neighborhood UFP PNC after
applying mobility weights. Smoothing can be seen where neighborhoods with green borders and red areas
initially had low concentrations that increased after applying mobility weights, and vice versa for
neighborhoods with orange borders with green areas. UFP = ultrafine particles.

A) 2006 Weights
Pre-Weighting
UFP PNC Tertile
Lowest
Midile
Highest
Post-Weighting
Change in UFP PNC
Decrease by al least 400 ptiem3
Increase by at least 400 ptlem3
Less than +/- 400 pticm3

Figure A.49. Change in Toronto combined model BC concentration predictions after applying 2006
and 2016 mobility weights.

Neighborhood border color indicates the neighborhood’s BC concentration tertile prior to mobility
weighting. Neighborhood area color indicates the change in neighborhood UFP number concentration
after applying mobility weights. Smoothing can be seen where neighborhoods with green borders and red
areas initially had low concentrations that increased after applying mobility weights, and vice versa for
neighborhoods with orange borders with green areas. BC = black carbon; UFP = ultrafine particles.
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Figure A.50. Change in Montreal combined model UFP number concentration predictions after
applying 2003 and 2018 mobility weights.

Neighborhood border color indicates the neighborhood’s UFP number concentrations tertile prior to
mobility weighting. Neighborhood area color indicates the change in neighborhood UFP PNC after
applying mobility weights. Smoothing can be seen where neighborhoods with green borders and red areas
initially had low concentrations that increased after applying mobility weights, and vice versa for
neighborhoods with orange borders with green areas. The use of 2003 versus 2018 weights resulted in
different degrees of smoothing. UFP = ultrafine particles.

A) 2003 Weights
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Lowest
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Figure A.51. Change in Montreal combined model BC predictions after applying 2003 and 2018
mobility weights.

Neighborhood border color indicates the neighborhood’s BC concentration tertile prior to mobility
weighting. Neighborhood area color indicates the change in neighborhood BC concentration after
applying mobility weights. Smoothing can be seen where neighborhoods with green borders and red areas
initially had low concentrations that increased after applying mobility weights, and vice versa for
neighborhoods with orange borders with green areas. The use of 2003 versus 2018 weights resulted in
different degrees of smoothing. BC = black carbon.
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Figure A.52. Toronto combined model UFP number concentrations surfaces backcasted to various
years.

LUR predictions using available historical traffic data were incorporated into the combined model. LUR
= land use regression; UFP = ultrafine particles.
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Figure A.53. Toronto combined model UFP size surfaces backcasted to various years.
LUR predictions using available historical traffic data were incorporated into the combined model. The
higher historical traffic emissions resulted in smaller predicted UFP size along roads. LUR = land use

regression; UFP = ultrafine particles.
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Figure A.54. Toronto combined model BC surfaces backcasted to various years.
LUR predictions using available historical traffic data were incorporated into the combined model. BC =

black carbon; LUR = land use regression.
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Figure A.55. Montreal combined model UFP number concentration surfaces backcasted to various

years.

LUR predictions using available historical traffic data were incorporated into the combined model. LUR

= land use regression; UFP = ultrafine particles.
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Figure A.56. Montreal combined model UFP size surfaces backcasted to various years.
LUR predictions using available historical traffic data were incorporated into the combined model. LUR

= land use regression; UFP = ultrafine particles.
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Figure A.57. Montreal combined model BC surfaces backcasted to various years.
LUR predictions using available historical traffic data were incorporated into the combined model. BC =

black carbon; LUR = land use regression.
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Figure A.58. Concentration-response curves of outdoor BC and mortality outcomes.

BC = black carbon.
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Figure A.59. Concentration-response curves for outdoor UFP number concentrations, UFP size, and mortality outcomes for the LUR and
CNN models separately.
CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
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APPENDIX B: MONITORING AND
BACKCASTING DETAILS

1. MONITORING LESSONS LEARNED

We completed large-scale mobile and fixed-site monitoring campaigns in Montreal and Toronto. The
final models described in this report were developed using UFP and BC data that were collected
simultaneously during more than 1,200 hours of mobile monitoring. Unfortunately, we also encountered
several challenges that limited the amount of usable data. The challenges, impacts, and lessons learned are
listed below.

A. O3 and NO; Mobile Monitoring

L.

Challenge: Oz and NO, were monitored during the mobile monitoring campaign using the newly
developed Urban Scanner from Scentroid (Stouffville, Ontario, CA). In preparation for the
mobile monitoring campaign, a 9-day co-location campaign was conducted in the summer of
2020 next to a US EPA-approved fixed-air quality station in Toronto with additional co-location
campaigns planned to take place throughout the mobile monitoring campaign. After the start of
the mobile monitoring campaign, it became apparent that the Urban Scanner required much more
calibration. This was conducted by Scentroid staff and our team members in Toronto, Canada.
We had a second Urban Scanner for Montreal that was sent to Scentroid midway through the
mobile monitoring campaign for upgrades and additional calibration, but this second unit never
worked properly.

Impact: The Montreal Oz and NO, data were not valid, and thus we did not develop new Oz and
NO; models for Montreal. The extensive effort to calibrate the Toronto Urban Scanner and the
new Toronto Oz and NO; models are described here:

a. Ganji A, Youssefi O, Xu J, Mallinen K, Lloyd M, Wang A, et al. Design, calibration, and
testing of mobile sensor system for air pollution and build environment data collection: the
urban scanner platform. Environ Pollut 2023;317:120720.

b. Ganji A, Saeedi M, Lloyd M, Xu J, Weichenthal S, Hatzopoulou M. 2023. Air pollution
prediction and backcasting through a combination of mobile monitoring and historical
on-road traffic emission inventories. Submitted for publication.

For the epidemiological analysis, we applied exposure estimates from these existing models to the
cohort rather than mixing our new O3 and NO;, model estimates for Toronto with existing O3 and
NO; model estimates for Montreal.

Lesson learned: Extensive time should be allocated to calibrate and test newly developed
monitoring equipment. If that is not feasible, then existing equipment with a proven track record
should be used instead of newly developed equipment.

B. Winter Fixed-Site Monitoring

L.

2.

3.

Challenge: COVID-19 restrictions prevented our team from meeting in person and conducting
winter fixed-site monitoring. Mobile monitoring was still possible because it required only one
team member at a time to be in the laboratory or in the monitoring vehicle.

Impact: Without winter fixed-site UFP and BC data, we could not develop annual average UFP
and BC models based on fixed-site monitoring.

Lesson learned: Under certain circumstances, mobile monitoring can be easier to conduct than
fixed-site monitoring.

C. Summer UFP Fixed-Site Monitoring

1.

Challenge: We used Naneos Partector 2 and Testo DiSCmini handheld UFP monitors for the 2-
week-long fixed-site monitoring. Ambient weather conditions during monitoring were
unseasonably hot and humid. At times, the ambient temperature exceeded 30°C and relative
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humidity exceeded 90%, which are both above the operating conditions of the Partector 2 and the
DiscMini.

Impact: Within a few days of monitoring, the high ambient temperatures and humidity resulted in
errors for most of the UFP monitors. Once there is an error, the data are no longer valid.
Consequently, we had valid UFP data for only a handful of fixed sites. Coupled with the lack of
fixed-site data during winter due to COVID-19 restrictions, we could not develop annual average
UFP models based on fixed-site monitoring.

Lesson learned: The Naneos Partector 2 and Testo DiSCmini may not be suitable for
continuously monitoring UFP levels over multiple days in high temperature and high relative
humidity conditions (i.e., outside of their operating conditions).

D. Summer BC Fixed-Site Monitoring

1.

Challenge: The BC 2-week-long fixed-site monitoring was done using Ultrasonic Personal Air
Sampler (UPAS) monitors powered by solar panels and external batteries. After we had charged
the external batteries, they automatically switched off to prevent unintentional discharge. We
failed to recognize this change and did not set the batteries to “always on” mode for the Montreal
fixed-site campaign. This meant that each UPAS was being powered only by its internal battery
and the solar panel, which led to UPAS monitors shutting down on the second night of
monitoring.

Impact: We collected only approximately 2 days’ worth of data during Montreal summer BC
fixed-site monitoring. Coupled with the lack of fixed-site data during winter due to COVID-19
restrictions, we could not develop annual average BC models based on fixed-site monitoring.
Lesson learned: Our UPAS fixed-site monitoring procedure needs to include an external battery
power check using a USB-powered LED light for visual confirmation that the external battery is
in “always on” mode and providing power to the UPAS as required. This lesson learned was
successfully implemented for the Toronto fixed-site campaign.
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2. ROUTE SELECTION FOR MOBILE MONITORING

Mobile monitoring routes were selected to include different types of roads and land use
characteristics across each city. To do this, we first intersected land use and built environment data (road
variables: highway length, major roads, bus routes, traffic emissions; land use: commercial, parks, water;
landmarks: airport, port, shoreline; other: elevation, industrial emissions, building height and footprint)
with a 100 x 100 m grid for both Toronto and Montreal. Next, principal component analysis was used to
identify components that explained the highest amount of variance in the data. Components that
represented the most variance were selected for clustering. Specifically, land use clustering was based on
the silhouette (S;) and Davies-Bouldin methods. The silhouette value for each point is a measure of how
similar that point is to other points in its own cluster when compared to points in other clusters. It is
calculated as:

Si= (b, - a,-)/max(a,-,bl-)
where:
e g;is the average distance (e.g., difference in values for a given land use characteristic)
from the i™ point to the other points in the same cluster.
e  b;is the minimum average distance from the i point to points in a different cluster,
minimized over clusters.

The silhouette value ranges from —1 to 1. A high silhouette value indicates that point i is well-
matched to its own cluster and poorly matched to other clusters. To find the optimal number of clusters,
we used Davies-Bouldin criterion, DB(C), which evaluates how well the clustering has been done. The
Davies—Bouldin criterion is based on a ratio of within-cluster to between-cluster distances:

k
1
DB(C) = — max D, k=|C
(€)= > max Dy, k=cl,
i=1
where:

e Dy is the within-to-between cluster distance ratio for the i™ and j* clusters (i.e., Dy = (d; +

dy)/ dy).
e d; is the average distance between every data point in cluster i and its centroid, similar for

d;.

e d;is the Euclidean distance between the centroids of the two clusters. If two clusters are
close together (small dj) but have a large spread (large d; + d}), then this ratio will be
large, indicating that these clusters are not very distinct.

In Montreal, 14 mobile monitoring routes were identified on the basis of the above procedure,
whereas 20 routes were identified in Toronto (Figure A.1). The same sampling protocol was followed for
mobile monitoring in both cities with route, day of the week, and start time (7 a.m.—11 p.m.) randomly
selected each day. Monitoring was conducted approximately 5 days per week, and approximately four
routes were monitored during each sampling period for a total route length of approximately 75 km per
monitoring day (~4 hours).
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3. QUALITY CONTROL PROCEDURES FOR DATA COLLECTION

3.1. MOBILE MONITORING OF OUTDOOR AIR POLLUTANTS

In each city, mobile monitoring was conducted using a predefined schedule of routes randomized
over space, time of day, and day of week (including evenings and weekends). We concurrently used
research-grade instruments to measure UFPs (Testo DiSCmini/Naneos Partector 2) and BC (Aethlabs
MA350). All air pollution measurements were collected at 1-second resolution. Due to the technical issues
with the Montreal O3 and NO, monitors (described earlier under Lessons Learned) and the removal of those
gases from the main exposure model development analysis, the QA and QC procedures for mobile O3 and
NO: monitoring are not included.

QA AND QC FOR UFP AND BC DATA

All direct-reading UFP and BC monitors were factory-calibrated before use, and all monitors were
charged on a daily basis (overnight) to ensure adequate battery life during each mobile monitoring route.
Zero checks (i.e., making sure the instrument reads 0 particles/cm?® when a zero filter is placed on the inlet)
were performed on the UFP monitors on a monthly basis, and BC monitor sampling tapes were checked
weekly to verify that they were not overloaded. The grit pots of the UFP monitors were cleaned weekly
using a Kimwipe to remove any accumulating dust. At the start of each monitoring run, the monitors were
powered on and time-synced using timeanddate.com. During mobile monitoring, the monitors were
periodically checked for error messages, and the run was terminated if there were any errors. At the end of
each run, the data were offloaded from the monitors to a hard drive and uploaded to the project’s sync.com
storage. Any value below the lower limit of detection was imputed with a value of half the lower limit of
detection. Any value above the upper limit of detection was imputed with the upper limit of detection. Any
monitors that required additional maintenance were sent back to the original equipment manufacturer.

3.2. FIXED-SITE MONITORING OF OUTDOOR AIR POLLUTANTS

Fixed monitoring sites were selected to capture the range of land use and traffic characteristics
across Toronto and Montreal while maximizing spatial coverage. Fixed-site monitoring was conducted over
2 weeks in each city (a second 2-week campaign was planned but could not be completed due to COVID-
19 restrictions; more details provided under Lessons Learned). In Montreal, fixed-site monitoring took
place during June 2021. In Toronto, fixed-site monitoring took place during July 2021. In both cities, fixed-
site monitoring of all pollutants (UFPs, BC, NO,/O3) took place simultaneously.

QA AND QC FOR FIXED-SITE BC (UPAS)

Integrated 2-week samples of outdoor BC concentrations were collected at approximately 70
locations across Montreal and Toronto using UPAS PM; s monitors (Access Sensor Technologies) with 37-
mm Teflon filters. This setup includes a UPAS monitor running at 75% duty cycle at 1 L/min (i.e., sampling
for 45 seconds out of every minute) attached to two external batteries, which are in turn charged by a solar
panel. All UPAS monitors used to collect BC samples were flow-checked (using an Alicat mass flow meter)
before and after each campaign to verify a sampling flow within 5% of the target flow rate of 1 L/min. In
addition, all UPAS monitors were time-synced to ensure simultaneous data collection over each 2-week
monitoring period. Field blanks (10%) and duplicate samples (~10%) were collected to evaluate the
reliability of field measurements for BC. After the 2-week monitoring campaign, BC concentrations were
measured on Teflon filters using a Sootscan Model OT21 Transmissometer (880 nm) (Magee Scientific).
All Teflon filters were labeled with a unique barcode and also underwent gravimetric analyses for PM» s
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mass concentrations at the University of British Columbia to describe ambient air quality conditions during
fixed-site monitoring.

QA AND QC FOR FIXED-SITE NO: AND O3 (OGAWA MONITORS)

Integrated samples of outdoor NO,/Os concentrations were measured at the same 70 locations as
the BC monitors using Ogawa passive samplers (Ogawa & Co.). All samples were sent for laboratory
analyses (ion chromatography, University of Toronto) immediately after each monitoring campaign. Field
blanks (10%) and duplicate samples (~10%) were collected to evaluate the reliability of field measurements
for NO»/O;. Ogawa samplers were stored in sealed containers before and after sample collection and were
refrigerated prior to shipping and laboratory analysis.

QA AND QC FOR FIXED-SITE ULTRAFINE PARTICLES

We used 20 to 30 Testo DiSCmini nanoparticle counters (and three Partector 2 nanoparticle
dosimeters, which are a newer version of the DiSCmini that operate on the same principle) to collect fixed-
site UFP data across Montreal and Toronto. These monitors log real-time measurements of UFP number
concentrations (10—300 nm) at 1-second resolution along with mean particle size and lung deposited surface
area, which is a function of particle number concentration and particle size. Health Canada has provided
in-kind use of approximately 20 of these monitors, and we acquired several more using funding from this
application (three instruments). These monitors have been shown to perform well in comparison to
laboratory-grade condensation particle counters and are advantageous in that they do not require
isopropanol to operate; thus, they can collect data over extended periods of time without continuous
oversight.

Data collection for fixed-site UFPs occurred over the same 2-week periods as BC and NO»/O; but
at different locations. Different locations were needed for UFP monitors because the instruments are very
expensive (~$11,000-15,000 USD each) and electricity is needed to avoid data loss owing to depleted
batteries. Residential locations were targeted for fixed-site UFP monitoring, as residences are generally
secure, available across a range of land use and traffic characteristics, and have access to electricity. These
sites were recruited through targeted mailing campaigns (including a brief letter outlining the purpose of
our study) and door-to-door visits, which have proved effective in past spatial studies. We tried to ensure
that sites were near locations where UPAS monitors would be located, but due to the limited number of
monitors, there was less coverage. All UFP monitors were factory-calibrated at the start of our study.

67



4. HISTORIC TRAFFIC DATA

4.1. METHODOLOGY

Traffic and NOy are two crucial variables for the accurate prediction of traffic-related air pollution'
and were predicted using the Traffic Emission Prediction scheme (TEPs)!? from 2006 to 2020 for Toronto
and from 2015 to 2020 for Montreal. TEPs uses statistical methods and machine learning techniques (e.g.,
time series analysis, LUR geostatistical, neural network, and CNN methods) to generate yearly traffic
counts and emissions.

For backcasting, we used traffic data and fleet and emission distributions to generate traffic volumes
and emission inventories for all roads in Toronto and Montreal. For each road, we computed Sen’s slope
and Mann-Kendall test to capture trends. Given these trends, traffic and NOy emission predictors were
adjusted and estimated in previous years.

4.2. TEPs

The image processing module extracts the road characteristics, including road width and direction,
from images and subsequently detects the number of vehicles on the road. Then, a neural network approach
generates hourly and daily traffic volumes for each road based on vehicles extracted from images and road
characteristics. Because the traffic fluctuates across hours of the day and weeks, a nearest-neighbor
approach was used to generate coefficients of daily to yearly volumes. These coefficients convert the hourly
and daily image-based traffic counts to annual average daily traffic (AADT). These coefficients are then
used to estimate AADT for roads with aerial images and/or short-term traffic counts.

Pattern recognition uses information from nearby traffic count sites to estimate AADT using daily
traffic counts predicted from images. AADT is estimated for each road with short to intermediate-length
traffic counts using pattern recognition. This process uses all available historical and predicted counts to
estimate a seasonal pattern for both permanent and temporary stations. Then, comparing the normalized
seasonal patterns between temporary and permanent stations, a short-term station is assigned to a permanent
station to estimate a traffic growth rate and a transformation coefficient for daily, monthly, and yearly
volumes. Regression-kriging and regression are used to extend the predicted AADT to roads with no aerial
images (poor quality or image showing no traffic) or traffic counts.

4.3. MULTIYEAR TRAFFIC AND EMISSIONS INVENTORIES

The City of Toronto and Montreal manage a traffic data collection program in support of various
transportation operations and planning functions. Toronto’s traffic count database from 2006 to the present
is made of 15-minute traffic counts from different types of stations, including permanent traffic counts
(324 stations, ~1%), short-period traffic counts (~95%), and turning movement counts (TMCs) (~4%). The
latter are collected manually and are conducted over 10 hours in a single day. Montreal has a network of
approximately 950 TMC stations situated at various intersections. The data recorded at these stations
typically span less than 8 days. These TMC data, when combined with the information from MTQ
permanent stations, play a crucial role in estimating traffic counts for the entire Montreal island.

To spatially and temporally interpolate traffic counts across the entire road network, we used an
approach developed by our research group and documented by Ganji and colleagues.!?> The TEPs uses a
long record of traffic counts to generate daily traffic. A pattern recognition approach further identifies a
coefficient to estimate AADT from daily values. This technique provides a unique basis for using short-
term traffic counts (e.g., 1 day) for long-term traffic prediction. TEPs consists of a set of mathematical and
statistical approaches. Three modules drive the TEPs framework: image processing, pattern recognition,
and interpolation.

TEPs also generates emissions for all roads in Toronto. For this purpose, AADT values on each road
segment were multiplied by the length of the road to generate vehicle kilometers traveled (VKT), which
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were then multiplied by the corresponding emission factors to obtain emissions. Emission factors for NOy
were derived from the US EPA model MOVES (Motor Vehicle Emission Simulator) calibrated to reflect
local conditions.

4.4. TREND ANALYSIS

Using the long-term traffic volumes and emissions derived for each road, we conducted a trend
analysis to identify the roads that experienced significant changes from those that did not exhibit significant
trends. This is important because traffic varies both spatially and temporally, and while citywide total traffic
counts or emissions may exhibit linear trends over time, certain neighborhoods may exhibit sharp changes
as a result of changes in population and employment. We employed the Mann-Kendall and Sen’s slope
estimators, two nonparametric methods to detect trends for every road segment in Toronto.

Mann-Kendall Test

The nonparametric Mann-Kendall*>* is used to quantify the significance of trends in time series®®
with a test statistic Zg, which is estimated using Equation (1). Positive and negative Z indicate increasing
and decreasing trends, respectively. For statistical testing of the trend, Z is compared with a value obtained
from standard normal distribution at the specific a significance level.

S—-1
(EIZIE '—Var(s) §$>0
Zi=y 0 §=0 (1)
s S<0

where statistic S is estimated as follows:
_ yn-1
S =XiZ1 Zj=i+159n(x; — x;) (2

where x; — x; are the difference between data values in time series i and j (j > i), n is the number of
datasets, and sgn() is the sign function, which is +1, —1, 0 for the case that x; — x; is bigger, smaller, and
equal to zero, respectively. The variance in Equation (1) is computed as follows:

Var(s) = n(n—l)(2n+5)—21%1 ti(t;—1)(2t;+5) 3)
where m and t; are the number of tied groups (set of sample data with the same value) and ties of extent i,
respectively. A significance level of a = 0.05 was used in this study.

Sen’s Slope Estimator
For a given time series of any variable x, Sen’s slope,” which is a nonparametric trend analysis, is
determined as follows:

Qrv+1)+2] N is odd
Omea = {Q[E] + Q[w] N is even )

2

where Q; is determined as follows:

Xi—X i
QFﬁ i=1,..,N (5)
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where j and k represent times j and k (j > k), respectively. N is the number of Q;; values and is
determined using the number of time steps and observations n(n — 1)/2. The confidence level of Q;,.4 at
significance levels of a can be estimated using Equation (6):

C, = Z1—§ =/ Var(s) (6)

where Z, _a can be extracted from a standard normal distribution with significance levels of a and Var(s)
2

was introduced in Equation (3).
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5. FIXED-SITE MONITORING

Fixed-site monitoring campaigns were conducted for 2 weeks in each city during summer 2021
(June 2021 for Montreal and July 2021 for Toronto). Fixed-site monitoring locations were selected to
overlap with the locations of mobile-monitoring routes, which were designed to capture variations in land
use and traffic characteristics across each city, as described previously. In Montreal, 64 sites were
successfully monitored for NO,, 68 for Os, 0 for BC, and 18 for UFPs. In Toronto, 57 sites were
successfully monitored for NO,, 56 for Os, 55 for BC, and 21 for UFPs. Data from additional fixed sites
were discarded due to monitor errors and failures. Outdoor NO»/O3 data were collected using Ogawa
passive samplers with subsequent analysis by ion chromatography. Blanks (n = 31 for NO»; n = 10 for
03), and duplicate samples (n = 12) were also collected for NO,/Os.

Fixed-site BC measurements were collected at the same locations as NO»/O3; measurements using
UPAS monitors with 37-mm Teflon filters. UPAS monitors were operated at 75% duty cycle at 1 L/min
(i.e., sampling for 45 of every 60 seconds); monitors were located in a weather-proof case and were
attached to two external batteries, which were in turn charged by a solar panel. After the 2-week
monitoring period, BC concentrations were measured using a Sootscan Model OT21 Transmissometer
(880 nm). Finally, fixed-site UFP measurements were collected using the same instruments described
earlier for mobile monitoring and were located at different locations than those used for BC/NO,/O;
because the UFP monitors required access to electricity to operate over the entire 2-week period.
Locations for UFP monitors were selected to be as close as possible to locations used for BC/NO,/O;. The
descriptive data results for fixed-site monitoring are shown in Table A.2.
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