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The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the Institute

•	 identifies the highest-priority areas for health effects research

•	 competitively funds and oversees research projects

•	 provides an intensive independent review of HEI-supported studies and related research

•	 integrates HEI’s research results with those of other institutions into broader evaluations

•	 communicates the results of HEI’s research and analyses to public and private decision-
makers.

HEI typically receives balanced funding from the US Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United 
States and around the world also support major projects or research programs. HEI has funded 
more than 380 research projects in North America, Europe, Asia, and Latin America, the results 
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel 
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more than 
260 comprehensive reports published by HEI, as well as in more than 2,500 articles in the peer-
reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee 
their conduct. The HEI Improved Exposure Assessment Studies Review Panel, which has no role 
in selecting or overseeing studies, works with staff to evaluate and interpret the results of funded 
studies and related research.

All project results and accompanying comments by the Review Panel are widely disseminated 
through HEI’s website (www.healtheffects.org), reports, newsletters, annual conferences, and 
presentations to legislative bodies and public agencies.

A B O U T  H E I

http://www.healtheffects.org




 ix

Research Report 217, Long-Term Exposure to Outdoor Ultrafine Particles and Black Carbon and 
Effects on Mortality in Montreal and Toronto, Canada, presents a research project funded by the 
Health Effects Institute and conducted by Dr. Scott Weichenthal of McGill University, Montreal, 
Quebec, Canada, and his colleagues. The report contains three main sections:

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the study 
and its findings; it also briefly describes the Review Panel’s comments on the study.

The Investigators’ Report, prepared by Weichenthal and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Review Panel with the assistance of HEI 
staff, places the study in a broader scientific context, points out its strengths and limitations, 
and discusses the remaining uncertainties and implications of the study’s findings for public 
health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Review Panel, an 
independent panel of distinguished scientists who are not involved in selecting or overseeing HEI 
studies. During the review process, the investigators have an opportunity to exchange comments 
with the Review Panel and, as necessary, to revise their report. The Commentary reflects the 
information provided in the final version of the report.
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P R E FA C E

HEI’s Research to Assess Health Effects of Traffic-Related 
Air Pollution and to Improve Exposure Assessment for 
Health Studies

INTRODUCTION

Traffic emissions are an important source of urban 
air pollution and have been linked to various adverse 
health outcomes (Atkinson et al 2018; Health Canada 
2016; HEI 2010; HEI 2022a; Huangfu and Atkinson 
2020; US Environmental Protection Agency [US EPA] 
2016). Over the last several decades, air quality reg-
ulations and improvements in vehicular emission con-
trol technologies have steadily decreased emissions 
from motor vehicles. As a result, ambient concen-
trations of several major traffic-related air pollutants 
have decreased in most high-income countries, even 
as vehicle miles traveled and economic activity have 
increased and older or malfunctioning vehicles have 
remained on the roads (HEI 2022a; US EPA 2023).

Following HEI’s widely cited 2010 Report (HEI 
2010), HEI published Special Report 23, a systematic 
review of more than 350 epidemiological studies on the 
health effects of long-term exposure to emissions of 
primary traffic-related air pollutants (HEI 2022a). The 
report found a high level of confidence that strong con-
nections exist between traffic-related air pollution and 
early death due to cardiovascular diseases. A  strong 
connection was also found between traffic-related air 
pollution and lung cancer mortality, asthma onset in 
children and adults, and acute lower respiratory infec-
tions in children (Preface Figure). The confidence in 
the evidence was considered moderate, low, or very 
low for the other selected outcomes, such as coronary 
events, diabetes, and adverse birth outcomes.

Although traffic-related emissions have decreased 
over the past decades, further research is warranted 
in several areas. Emerging evidence suggests that trans-
portation can affect health through many intertwined 
pathways such as collisions, noise, climate change, tem-
perature, stress, and the lack of physical activity and 
green space (Glazener et al. 2021). As tailpipe emissions 
from internal combustion engines decrease and electric 

vehicles increase market share, more studies are needed 
to quantify human exposures to nontailpipe particulate 
matter better and to assess the health effects associ-
ated with those exposures. Relatively few studies eval-
uate how influential factors such as green space, heat 
exposure, noise pollution, and physical activity interact 
with or modify air pollution health effects. Evaluation of 
those factors and exposures are critical because they 
reflect real-world conditions and might further advance 
our understanding of the implications of transporta-
tion activities on traffic-related air pollution and health 
(Khreis et al. 2020).

Moreover, better understanding is needed of the 
role of specific pollutants including nitrogen dioxide 
(NO2) and ultrafine particles (UFPs), the health effects 
of short-term exposures versus long-term exposures, 
the effects on a broader range of health outcomes 
(such as neurological and birth outcomes) that have 
not been extensively examined, and the ways in which 
marginalized communities are affected. However, a 
challenge for exposure assessment of traffic-related 
air pollution is that traffic emits a complex mixture of 
pollutants in particulate and gaseous forms, many of 
which are also emitted by other sources. In addition, 
traffic-related air pollution is characterized by high 
spatial and temporal variability, with the highest con-
centrations occurring at or near major roads. There-
fore, it has been difficult to identify an appropriate 
exposure metric that uniquely indicates traffic-related 
air pollution and to model the distribution of expo-
sure at a sufficiently high degree of spatial and tempo-
ral resolution.

Various air quality models—such as dispersion, 
land use regression, and hybrid models—have been 
developed to estimate long-term exposure to air pol-
lution (HEI 2022a; Hoek 2017; Jerrett et al. 2005). 
Recent developments in measurement technologies 
and approaches to modeling long-term exposure to 
air pollution have increasingly been used to provide air 

Health Effects Institute Research Report 217 © 2024

https://www.healtheffects.org/publication/systematic-review-and-meta-analysis-selected-health-effects-long-term-exposure-traffic


xiv

pollution estimates at fine spatial scales for epidemiolog-
ical studies of large populations. Advances include novel 
air pollution sensors, mobile monitoring, satellite data, 
hybrid models, and machine-learning approaches (Hoek 
2017).

Moreover, many improvements in exposure models 
have occurred over time with the advance of geographic 
information system approaches and the application of more 
sophisticated statistical methods; see, for example, several 
studies previously funded by HEI: Apte 2024, Barratt 2018, 
Batterman 2020, Frey 2022, and Sarnat 2018. However, 
the usefulness of exposure estimates still depends on 
the model assumptions and input data quality, and there 
remain limitations and challenges when predicting air pol-
lution exposure, particularly for such pollutants as UFPs, 
NO2, and black carbon (BC) that vary highly in space and 
time. Few studies have compared the performance of dif-
ferent models and evaluated exposure measurement error 
and possible bias in health estimations.

Thus, HEI issued complementary requests for applica-
tions  in 2017 (RFA 17-1) and 2019 (RFA 19-1) to evaluate 
traffic-related health effects in the context of spatially cor-
related factors—specifically traffic noise, socio-economic 
status, and green space—and to improve exposure assess-
ment for health studies.

OBJECTIVES OF THE RFAs

OBJECTIVES OF RFA 17-1

RFA 17-1, Assessing Adverse Health Effects of Exposure to 
Traffic-Related Air Pollution, Noise, and Their Interactions with 
Socioeconomic Status, solicited studies that sought to assess 
adverse health effects from exposure to traffic-related air 
pollution and to disentangle the effects from spatially cor-
related confounding or modifying factors — most nota-
bly, traffic noise, socioeconomic status, and the built envi-
ronment, including green space. The RFA had five major 
objectives:

1.	 In the proposed health studies, develop, validate, and 
apply improved exposure assessment methods and 
models suitable for estimating exposure to traffic-re-
lated air pollution that take into account other air 
pollution sources in urban areas (such as airports, 
[sea]ports, industries, and other local point sources) 
and that would be able to distinguish between tail-
pipe and nontailpipe traffic emissions.

2.	 Propose ways in these studies to disentangle the rela-
tionship of adverse health effects of traffic-related air 
pollution and traffic noise.

3.	 Develop, evaluate, and apply indicators of socioeco-
nomic status at the individual and community level 

Preface Figure. Overall confidence in the evidence for an association between long-term exposure to traffic-related 
air pollution and selected health outcomes. Health outcomes for which the overall confidence in the evidence was low to 
moderate, low, or very low are not in the figure. Reproduced from HEI 2022a.
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in the proposed health studies; if such indicators are 
novel, compare with socioeconomic status indicators 
commonly used in the literature.

4.	 Explore the role of other factors that might con-
found or modify the health effects of traffic-related 
air pollution at the individual (e.g., age, smoking status, 
diet, physical activity, and health status) and commu-
nity level (e.g., presence of green space, other factors 
related to the built environment, and walkability).

5.	 Investigate — to the extent that the measurements 
and patterns of a range of different indicators of traffic-
related air pollution allow it (e.g., NO2, UFPs, BC, and 
indicators of nontailpipe emissions) — whether one 
or more of them can be shown to have health effects 
independent of the other pollutants.

OBJECTIVES OF RFA 19-1

RFA 19-1, Applying Novel Approaches to Improve Long-
Term Exposure Assessment of Outdoor Air Pollution for Health 
Studies, solicited studies to assess exposures to air pol-
lution using new and conventional exposure assessment 
approaches, to evaluate quantitatively exposure measure-
ment error to determine the added value of the novel 
approaches, and to apply the exposure estimates in epi-
demiological analyses to evaluate the potential effect of 
exposure measurement error on chronic health estimates. 
The RFA had four major objectives:

1.	 Conduct a new monitoring campaign designed to 
determine long-term exposure to outdoor air pol-
lutants with high spatial and temporal variability by 
using sensors, mobile monitoring, location tracking, or 
other approaches.

2.	 Develop several exposure assessment approaches 
suitable to estimate long-term exposure to air pollu-
tion at relevant spatial and temporal scales for use in 
an ongoing or future health study.

3.	 Quantify exposure measurement error by evaluat-
ing and comparing the performance of models of 
long-term air pollution exposure developed under 
this RFA to the performance of previous models.

4.	 Apply the various exposure estimates in an ongo-
ing health study to evaluate the potential impact of 
exposure measurement error in health estimates or 
explain how the exposure assessments would be 
directly applicable to future health studies.

DESCRIPTION OF THE RESEARCH PROGRAM

Three 4-year studies were funded under RFA 17-1 and 
five 3-year studies were funded under RFA 19-1 to cover 
the various RFA objectives; they are summarized below 
(Preface Table). The study by Weichenthal and col-
leagues described in this report (Research Report 217) is 
the first to be published.

STUDIES FUNDED UNDER RFA 17-1

HEI funded two studies in Europe and one study in the 
United States to evaluate various aspects of the associ-
ation between long-term traffic-related air pollution and 
health by using existing cohorts (Denmark, USA) and a 
newly recruited cohort (Spain). Two studies focused on 
health outcomes during pregnancy (Dadvand) and child-
hood (Franklin), and one study focused on cardiometa-
bolic outcomes in adults (Raaschou-Nielsen).

“Traffic-Related Air Pollution and Birth Weight: The 
Roles of Noise, Placental Function, Green Space, Phys-
ical Activity, and Socioeconomic Status (FRONTIER),” 
Payam Dadvand and Jordi Sunyer, Barcelona Institute for 
Global Health (ISGlobal), Spain  Dadvand, Sunyer, and 
colleagues established a new cohort, named Barcelona Life 
Study Cohort (BiSC) of 1,080 healthy pregnant women 
in Barcelona, Spain, in 2018. They estimated exposure to 
various traffic-related pollutants by using hybrid models 
that included dispersion models, land use data, time-ac-
tivity data, and personal and home-outdoor air pollution 
monitoring data. They linked the exposure to various birth 
outcomes including birth weight, small for gestational age, 
and fetal growth trajectories. They evaluated the role of 
traffic noise and green space and also took into account 
socioeconomic status and maternal stress (in review).

“Intersections as Hot Spots: Assessing the Contribution 
of Localized Non-Tailpipe Emissions and Noise on the 
Association between Traffic and Children’s Respiratory 
Health,” Meredith Franklin, University of Southern Cal-
ifornia, Los Angeles  Franklin and colleagues developed 
novel exposure models of tailpipe and nontailpipe air pol-
lutants and noise and applied those models to children’s 
respiratory health in a large Southern California cohort 
that was also studied in a previous HEI-funded study led 
by Frank Gilliland; see HEI Research Report 190. They made 
use of the most recent Children’s Health Study (CHS) 
cohort that was initiated in 2003 and included about 2,000 
children in eight communities. Longitudinal data on asthma 
and lung function were collected at various time points 
(2008–2012) at ages 11 through 16. Air pollution models 
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were supported by particulate matter filters at more than 
200 locations in the eight Southern California communities 
(in review).

“Cardiometabolic Health Effects of Air Pollution, Noise, 
Green Space and Socioeconomic Status: The HERMES 
Study,” Ole Raaschou-Nielsen, Danish Cancer Soci-
ety Research Center, Copenhagen, Denmark  Raa-
schou-Nielsen and colleagues evaluated effects of traf-
fic-related air pollution, traffic noise, lack of green space, 
and other factors on myocardial infarction, stroke, diabe-
tes, and related biomarkers in three cohorts, including an 
administrative cohort of about 2.6 million Danish adults 
in the period 2005–2017. They assessed traffic-related air 
pollution using a chemical transport model for various pol-
lutants, including UFPs and NO2. In addition, they assessed 
noise, household- and neighborhood-level socioeconomic 
status, and various residential green space exposure met-
rics (in review).

STUDIES FUNDED UNDER RFA 19-1

HEI funded five studies in North America and Europe 
to evaluate different aspects of improvements to expo-
sure assessment and the application of different exposure 
assessment approaches to existing cohorts. Three studies 
are focused on combining novel methods for measuring 
air pollution and diverse exposure assessment approaches 
to improve exposure assignment, including machine learn-
ing and mobile monitoring (Weichenthal and Hoek) and 
mobility (de Hoogh). Two studies are testing the added 
value of incrementally more complex statistical modeling 
approaches to improving exposure assessment in London 
(Katsouyanni) and Seattle (Sheppard) and applying their 
findings to estimating health effects in epidemiological 
studies.

“Long-Term Exposure to Outdoor Ultrafine Particles 
and Black Carbon and Effects on Mortality in Montreal 
and Toronto, Canada,” Scott Weichenthal, McGill Uni-
versity, Montreal, Canada  Weichenthal and colleagues 
estimated associations between long-term exposures to 
UFPs, BC, and other pollutants and mortality in Toronto 
and Montreal, Canada, using several exposure modeling 
approaches. They conducted mobile monitoring campaigns 
in both cities and used those newly collected data to 
develop various high-resolution exposure models, includ-
ing land use regression and machine learning. They then 
evaluated how the effect estimates for nonaccidental and 
cause-specific mortality in the Canadian Census Health 
and Environment Cohort (CanCHEC) are influenced by 
different exposure models (current report).

“Comparison of Long-Term Air Pollution Exposure Assess-
ment Based on Mobile Monitoring, Low-Cost Sensors, 
Dispersion Modelling and Routine Monitoring-Based 
Exposure Models (CLAIRE),” Gerard Hoek, Utrecht Uni-
versity, The Netherlands  Hoek and colleagues prepared 
maps of modeled annual average air pollution across the 
Netherlands, validated the maps using new measurements 
from 90 sites, and evaluated the performance of several 
exposure models. They conducted cross-comparisons 
to evaluate how different exposure assessment methods 
compare in their ability to predict long-term pollutant con-
centrations, with a particular focus on spatial variability of 
pollutants. They applied the various models to three major 
cohorts in the Netherlands — an administrative cohort of 
about 10 million adults (DUELS), the European Prospec-
tive Investigation into Cancer and Nutrition Netherlands 
(EPIC-NL), and the Prevention and Incidence of Asthma 
and Mite Allergy (PIAMA) birth cohort — to evaluate how 
they influence health effect estimates in epidemiological 
studies (in review).

“Accounting for Mobility in Air Pollution Exposure Esti-
mates in Studies on Long-Term Health Effects (MOBI-
AIR),” Kees de Hoogh, Swiss Tropical and Public Health 
Institute, Basel, Switzerland  Kees de Hoogh and col-
leagues used location tracking using a mobile phone 
application and GPS units for about 700 individuals in the 
Netherlands and Switzerland. They then compared expo-
sure estimates accounting for individual mobility to those 
accounting only for home addresses in three major cohorts: 
the Study on Air Pollution and Lung Disease in Adults 
(SAPALDIA) in Switzerland, participants in the European 
Prospective Investigation into Cancer and Nutrition Neth-
erlands (EPIC-NL), and the Swiss National Cohort (SNC) 
(in review).

“Investigating the Consequences of Measurement Error 
of Gradually More Sophisticated Long-Term Personal 
Exposure Models in Assessing Health Effects: The Lon-
don Study (MELONS),” Klea Katsouyanni, Imperial 
College, United Kingdom  Katsouyanni and colleagues 
evaluated whether increasingly detailed estimates of 
long-term exposures to outdoor air pollution yielded 
different estimates of the health effects. They leveraged 
personal exposure data from four earlier studies in Lon-
don. They compared predictions from various exposure 
models that accounted for exposure to indoor sources 
and mobility by using several types of air pollution mod-
els (dispersion, land use regression, machine learning, and 
hybrid models). Finally, exposures  were applied to the 
London segment of the UK Biobank study with about 
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62,000 participants to evaluate associations with mor-
tality (in review).

“Optimizing Exposure Assessment for Inference about 
Air Pollution Effects with Application to the Aging Brain,” 
Lianne Sheppard, University of Washington, Seat-
tle  Sheppard and colleagues compared and contrasted 
scientific and logistic benefits of different study designs to 
develop air pollution exposure estimates. They leveraged 
detailed air pollution data and cognitive function data from 
about 5,000 participants in the Adult Changes in Thought 
(ACT) Air Pollution study in Seattle. They developed sev-
eral exposure models that used air pollution data from 
mobile monitoring of UFPs, NO2, and other pollutants, 
and low-cost sensors. In particular, they used statistical 
techniques to assess the bias and precision of health effect 
estimates and compared the time and costs spent on more 
sophisticated exposure assessment activities to guide 
future studies in efficient selection of exposure assessment 
methods (in review).

FURTHER RESEARCH UNDERWAY

Given the large number of people exposed to traffic-re-
lated air pollution — both in and beyond the near-road 
environment — exposures to traffic-related air pollution 
remain an important public health concern and deserve 
greater attention from the public and from policymakers. 

Although emissions from automobile exhaust systems 
have decreased in recent years, emissions from the use 
and wear of brakes, tires, and other nontailpipe sources 
now contribute a higher fraction of the particulate emis-
sions. Therefore, HEI funded two ongoing studies funded 
under RFA 21-1, Quantifying Real-World Impacts of Non-Tail-
pipe Particulate Matter Emissions. The two studies involve 
measurements of mass and composition of ambient parti-
cles from nontailpipe motor vehicle sources to disentangle 
nontailpipe and tailpipe pollution and better understand 
how each effects human health. One study is measuring 
concentrations of nontailpipe particulate matter across 
Toronto, Canada, to determine how much nontailpipe pol-
lution people might breathe in everyday life and how to 
improve measurement of these exposures in the future. 
The other study is a panel study in which asthmatic adults 
rode stationary bicycles on sidewalks in three different 
exposure environments in London, United Kingdom, to 
measure how exposure to traffic with different mixtures 
of nontailpipe and tailpipe emissions affects lung function. 

Building on its prior and ongoing research and the 
recommendations from its systematic traffic review, HEI 
issued RFA 23-1, Assessing Health Effects of Traffic-Related 

Air Pollution in a Changing Urban Transportation Landscape. 
Investigators funded under RFA 23-1 will conduct epide-
miological and health impact assessment studies to assess 
current and potential future population-level health effects 
and health burdens associated with current and future 
transportation systems and traffic-related air pollution. 
The studies began in late spring 2024. HEI also publishes 
reports on the State of Global Air to communicate the 
relationship between air quality and health around the 
world; see, for example, a recent report on cities and NO2 
(HEI 2022b).

Looking ahead, HEI continues to support improvements 
in exposure assessment via the use of new technologies, 
such as satellite remote sensing data. HEI held a workshop 
to discuss applications of high-quality satellite remote sens-
ing data, which have opportunities for increased use in 
large epidemiological studies, studying the health effects of 
wildfires, and addressing environmental justice concerns. 
Challenges include the complexities of data assimilation 
and accessibility, and current data and algorithmic limita-
tions. HEI is developing an RFA to support research using 
or assessing the limitations of new approaches to incorpo-
rate satellite data products in health studies. 

REFERENCES

Apte JS, Chambliss SE, Messier KP, Gani S, Upadhya AR, 
Kushwaha M, et al. 2024. Scalable Multipollutant Exposure 
Assessment Using Routine Mobile Monitoring Platforms. 
Research Report 216. Boston, MA: Health Effects Institute.

Atkinson RW, Butland BK, Anderson HR, Maynard RL. 
2018. Long-term concentrations of nitrogen dioxide and 
mortality: A meta-analysis of cohort studies. Epidemiology 
29:460–472, doi:10.1097/EDE.0000000000000847.

Barratt B, Lee M, Wong P, Tang R, Tsui TH, Cheng W, et al. 
2018. A Dynamic Three-Dimensional Air Pollution Expo-
sure Model for Hong Kong. Research Report 194. Boston, 
MA: Health Effects Institute.

Batterman S, Berrocal VJ, Milando C, Gilani O, Arunachalam 
S, Zhang KM. 2020. Enhancing Models and Measurements 
of Traffic-Related Air Pollutants for Health Studies Using 
Dispersion Modeling and Bayesian Data Fusion. Research 
Report 202. Boston, MA: Health Effects Institute.

Frey HC, Grieshop AP, Khlystov A, Bang JJ, Rouphail N, 
Guinness J, et al. 2022. Characterizing Determinants of 
Near-Road Ambient Air Quality for an Urban Intersection 
and a Freeway Site. Research Report 207. Boston, MA: 
Health Effects Institute.

Glazener A, Sanchez K, Ramani T, Zietsman J, Nieuwenhui-
jsen MJ, Mindell JS, et al. 2021. Fourteen pathways between 

 
Preface

https://www.healtheffects.org/research/funding/rfa/21-1-quantifying-non-tailpipe-PM-emissions
https://www.healtheffects.org/research/funding/rfa/23-1-assessing-health-effects-traffic-related-air-pollution-changing-urban-transportation
https://www.healtheffects.org/meeting/satellite-derived-air-quality-opportunities


 xx

urban transportation and health: A conceptual model and 
literature review. J Transport Health 21:101070, https://doi.
org/10.1016/j.jth.2021.101070.

Health Canada. 2016. Human Health Risk Assessment for 
Ambient Nitrogen Dioxide. Ottawa, Ontario, Canada: 
Water and Air Quality Bureau.

HEI Panel on the Health Effects of Traffic-Related Air Pollu-
tion. 2010. Traffic-Related Air Pollution: A Critical Review of 
the Literature on Emissions, Exposure, and Health Effects. 
HEI Special Report 17. Boston, MA: Health Effects Institute.

HEI Panel on the Health Effects of Long-Term Exposure 
to Traffic-Related Air Pollution. 2022a. Systematic Review 
and Meta-analysis of Selected Health Effects of Long-Term 
Exposure to Traffic-Related Air Pollution. Special Report 23. 
Boston, MA: Health Effects Institute.

HEI. 2022b. Air Quality and Health in Cities: A State of 
Global Air Report 2022. Boston, MA: Health Effects Insti-
tute. Available: https://www.stateofglobalair.org/resources/
health-in-cities.

Hoek G. 2017. Methods for Assessing Long-Term Exposures 
to Outdoor Air Pollutants. Curr Environ Health Rep 4:450–
462, doi:10.1007/s40572-017-0169-5.

Huangfu P, Atkinson R. 2020. Long-term exposure to NO2 
and O3 and all-cause and respiratory mortality: A system-
atic review and meta-analysis. Environ Int 144:105998, 
doi:10.1016/j.envint.2020.105998.

Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou 
D, Sahsuvaroglu T, et al. 2005. A review and evaluation of 
intraurban air pollution exposure models. J Expo Anal Envi-
ron Epidemiol 15:185–204, doi:10.1038/sj.jea.7500388.

Khreis H, Nieuwenhuijsen M, Zietsman J, Ramani T (eds.). 
2020. Traffic-Related Air Pollution (1st edition). Waltham, 
MA: Elsevier.

Sarnat JA, Russell A, Liang D, Moutinho JL, Golan R, Weber 
RJ, et al. 2018. Developing Multipollutant Exposure Indica-
tors of Traffic Pollution: The Dorm Room Inhalation to Vehi-
cle Emissions (DRIVE) Study. Research Report 196. Boston, 
MA: Health Effects Institute.

US EPA. 2016. Integrated Science Assessment for Oxides of 
Nitrogen–Health Criteria. EPA/600/R-15/068. Washington, 
DC: US EPA. 

US EPA. 2023. Our Nation’s Air Trends Through 2022. Avail-
able: https://gispub.epa.gov/air/trendsreport/2023/ [accessed 
22 February 2024].

 
Preface

https://doi.org/10.1016/j.jth.2021.101070
https://doi.org/10.1016/j.jth.2021.101070
https://www.stateofglobalair.org/resources/health-in-cities
https://www.stateofglobalair.org/resources/health-in-cities
https://gispub.epa.gov/air/trendsreport/2023/


 1

H E I  S TAT E M E N T 
Synopsis of Research Report 217

Long-Term Exposure to Outdoor Ultrafine Particles and Black 
Carbon and Effects on Mortality in Montreal and Toronto, Canada

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by 
Dr. Scott Weichenthal at McGill University in Montreal, Quebec, Canada, and colleagues. Research Report 217 contains 
the detailed Investigators’ Report and a Commentary on the study prepared by the HEI Improved Exposure Assessment 
Review Panel.

BACKGROUND

There remain important limitations and 
challenges when estimating long-term air 
pollution exposure for use in epidemiological 
studies. In 2019, the Health Effects Institute 
therefore issued Request for Applications 19-1 
to develop and apply scalable novel approaches 
to improve assessments of long-term exposures 
to outdoor air pollutants that vary highly in 
space and time. Dr. Weichenthal was one of the 
five investigators funded under this Request for 
Applications. Dr. Weichenthal and colleagues 
assessed associations of long-term exposures to 
outdoor UFPs and black carbon with mortality 
in Toronto and Montreal, Canada, using several 
exposure modeling approaches.

APPROACH

Weichenthal and colleagues conducted 
mobile monitoring campaigns in both cities 
in 2020 and 2021, thus during the COVID-19 
pandemic, covering various times of day, 
weekdays, weekends, and all four seasons. 
They measured UFP number concentrations, 
UFP size, and black carbon in real-time. Data 
were calculated for each 100-m road segment 
(equivalent to about 6 seconds of observation 
per visit) and averaged over all sampling days. 
On average, each road segment was visited on 
10 different days.

The investigators developed three new expo-
sure models for each city separately: (a)  land 
use regression models based on the mobile 
monitoring data combined with detailed land 
use and traffic information; (b) machine learn-
ing models, specifically convolutional neural 
network models using mobile monitoring 
data and aerial images from Google Maps; and 
(c) a combination of these two models. They 
examined the new exposure models with and 
without backcasting to 2006 based on histori-
cal trends in traffic information and nitrogen 
oxide emissions. They also used survey data to 

examine the exposure models with and without account-
ing for neighborhood-level daily mobility patterns.

The investigators then applied those models to a large 
representative sample of Canadian adults (1.5  million) 
from the Canadian Census Health and Environment 
Cohort residing in Toronto or Montreal. The study pop-
ulation included adults who were 25 years and older 
from multiple Census years (1991–2006), with mortality 
follow-up from 2001 to 2016. Exposures were assigned to 
participants based on home postal code (about the size 
of a city block) and accounted for address changes over 
time. The investigators used both single and multipollut-
ant Cox proportional hazard models to assess the associ-
ation between exposures to UFP number concentrations 
and black carbon, and nonaccidental and cause-specific 
mortality. They adjusted the health analyses for import-
ant confounders, such as sociodemographic factors and 

What This Study Adds
•	 The study assessed associations of long-term 

exposures to outdoor ultrafine particles (UFPs) and 
black carbon with mortality in Canada, using several 
exposure modeling approaches.

•	 New mobile monitoring campaigns in Toronto and 
Montreal in 2020 and 2021 provided detailed data 
to develop high-resolution exposure models, includ-
ing land use regression and machine learning models.

•	 The investigators then applied those exposure 
models to 1.5 million Canadian adults from the 
Canadian Census Health and Environment Cohort 
residing in both cities.

•	 The exposure models that combined land use and 
machine learning model predictions performed 
slightly better versus models that used land use 
regression alone.

•	 Long-term exposures to UFP number concentra-
tions and black carbon were positively associated 
with mortality in single-pollutant models, but effect 
estimates were sensitive to adjustment for co-pol-
lutants and UFP size.
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co-pollutants. Specifically, the UFP number concentra-
tion analyses were adjusted for fine particulate matter, 
oxidant gases (a combination of nitrogen dioxide and 
ozone), UFP size, and black carbon; the black carbon 
analyses were adjusted for fine particulate matter, oxi-
dant gases, UFP size, and UFP number concentrations.

KEY RESULTS

The exposure models that combined land use 
regression and machine learning model predictions 
performed slightly better as compared to land use 
regression models alone. The combined model 
explained half or more of the observed spatial variation 
in UFPs and black carbon.

Using the combined exposure model with back-
casting, the investigators documented that long-term 
exposures to UFP number concentrations and black 
carbon were positively associated with mortality in 
single-pollutant models. However, these results were 
sensitive to adjustment for co-pollutants and UFP size. 
Associations between UFP number concentrations 

and mortality increased after adjusting for UFP size, 
whereas associations between black carbon and 
mortality became generally weaker or null (Statement 
Figure).

Generally, similar findings were reported for black 
carbon across various alternative exposure assess-
ment approaches, including without backcasting and 
accounting for mobility patterns. For UFP number con-
centrations, the association’s magnitude — but not the 
direction — differed substantially across the various 
alternative exposure approaches.

INTERPRETATION AND CONCLUSIONS

In its independent review of the study, the HEI 
Review Panel thought the research was well-motivated 
and addressed a clear research gap because there are 
few long-term air pollution and health studies on UFPs. 
The extensive year-long mobile monitoring campaign 
and the rigorous development and innovative features 
of the new high-resolution models were considered to 
be strengths of the study. Another strength was the use 

Statement Figure. Adjusted hazard ratios for UFP number concentrations (per 10,000 particles/cm3) and black 
carbon (per 500 ng/m3) and selected mortality outcomes using the combined exposure model with backcasting.
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of a large representative sample of Canadian adults to 
evaluate the sensitivity of the epidemiological analyses 
to different exposure assessment approaches.

Although the Panel broadly agreed with the inves-
tigators’ conclusions, some limitations should be 
considered when interpreting the results. Importantly, 
the adjustment for UFP size in health analyses of 
outdoor UFP number concentrations and black carbon 
was intriguing. However, it remains unclear how to 
interpret UFP size and this remains an area that war-
rants further research. More advanced multipollutant 
statistical approaches might be needed to capture the 
complex relationships across the different pollutants. 
The monitoring and exposure assessment approaches 
contained some uncertainties, such as the lack of fixed-
site monitoring and the temporal mismatch between 
the period captured by the mobile measurements and 
the exposure window most relevant for epidemiologi-
cal purposes. The findings in the current study of two 
Canadian cities might not be generalizable to other 
settings, partly due to distinct characteristics of these 
cities.

In summary, data from mobile monitoring are useful 
for developing high-resolution machine learning mod-
els and other exposure models but can have important 
limitations. Therefore, careful consideration is needed 
when using them in exposure assessment or epidemi-
ological analyses.
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ABSTRACT

Introduction	 Numerous studies support an important 
relationship between long-term exposure to outdoor fine 
particulate air pollution (PM2.5*) and both nonaccidental and 
cause-specific mortality. Less is known about the long-term 
health consequences of other traffic pollutants, including 
ultrafine particles (UFPs, <0.1 µm) and black carbon (BC), 
which are often present at elevated concentrations in urban 
areas but are not currently regulated. Knowledge is lacking 
largely because these pollutants generally are not moni-
tored by governments and vary greatly over small spatial 
scales, hindering the evaluation of long-term exposures in 
population-based studies.

Methods		 We aimed to estimate associations between long-
term exposures to outdoor UFPs and BC and nonaccidental 
and cause-specific mortality in Canada’s two largest cities, 
Montreal and Toronto. We considered several approaches to 

This Investigators’ Report is one part of the Health Effects Institute 
Research Report 217, which also includes a Commentary by the HEI 
Improved Exposure Assessment Review Panel and an HEI Statement 
about the research project. Correspondence concerning the Investiga-
tors’ Report may be addressed to Dr. Scott Weichenthal, Department 
of Epidemiology, Biostatistics, and Occupational Health, McGill 
University, 1110 Pins Avenue West, Montreal, Quebec, Canada, H3A 
1A2; email: scott.weichenthal@mcgill.ca. No potential conflict of 
interest was reported by the authors.

Although this document was produced with partial funding by 
the United States Environmental Protection Agency under Assis-
tance Award CR–83998101 to the Health Effects Institute, it has 
not been subjected to the Agency’s peer and administrative review 
and may not necessarily reflect the views of the Agency, and no 
official endorsement by it should be inferred. The contents of this 
document also have not been reviewed by private party institu-
tions, including those that support the Health Effects Institute; 
therefore, it may not reflect the views or policies of these parties, 
and no endorsement by them should be inferred.

exposure assessment: (1) land use regression (LUR) models 
based on large-scale year-long mobile monitoring campaigns 
combined with detailed land use and traffic information; 
(2) machine learning (i.e., convolutional neural networks 
[CNN]) models trained by combining mobile monitoring 
data with aerial images; and (3) the combined use of these 
two approaches. We also examined exposure models with 
and without backcasting based on historical trends in 
vehicle emissions (to capture potential trends in pollutant 
concentrations over time) and with and without accounting 
for neighborhood-level mobility patterns (based on travel 
demand surveys). These exposure models were linked to 
members of the Canadian Census Health and Environment 
Cohorts (CanCHEC) residing in Montreal or Toronto (includ-
ing census years 1991, 1996, 2001, and 2006) with mortality 
follow-up from 2001 (or cohort entry for the 2006 cohort) 
to 2016. Cox proportional hazard models were used to esti-
mate associations between long-term exposures to outdoor 
UFPs and BC, adjusting for sociodemographic factors and 
co-pollutants identified as potential confounding factors. 
Concentration-response relationships for outdoor UFPs and 
BC were also examined for nonaccidental and cause-specific 
mortality using smoothing splines.

Results	  Our cohort study included approximately 1.5 
million people with 174,200 nonaccidental deaths observed 
during the follow-up period. Combined LUR and machine 
learning model predictions performed slightly better than 
LUR models alone and were used as the main exposure 
models in all epidemiological analyses. Long-term exposures 
to outdoor UFP number concentrations were consistently 
positively associated with nonaccidental and cause-specific 
mortality. Importantly, hazard ratios (HRs) for outdoor UFP 
number concentrations were sensitive to adjustment for UFP 
size: UFP size was inversely related to number concentrations 
and independently associated with mortality, resulting in 
underestimation of mortality risk for outdoor UFP number 
concentrations when UFP size was excluded. HRs for outdoor 
UFP number concentrations were robust to backcasting and 
mobility weighting but varied slightly in analyses using LUR * A list of abbreviations and other terms appears at the end of this 

volume.

mailto:scott.weichenthal@mcgill.ca
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and machine learning models alone, with stronger associa-
tions typically observed for the machine learning models. 
Associations between outdoor BC concentrations and mortal-
ity were generally weak or null, but a positive association was 
observed for cardiovascular mortality.

Conclusions	 Outdoor UFP number concentrations were 
consistently associated with increased risks of nonaccidental 
and cause-specific mortality in Montreal and Toronto. Our 
results suggest that UFP size should be considered in epide-
miological analyses of outdoor UFP number concentrations, 
as excluding size can lead to an underestimation of health 
risks. Our results suggest that outdoor UFP number concen-
trations are positively associated with mortality independent 
of other outdoor air pollutants, including PM2.5 mass con-
centrations and oxidant gases (i.e., nitrogen dioxide [NO2] 
and ozone [O3]). As outdoor UFPs are currently unregulated, 
interventions targeting these pollutants could significantly 
affect population health.

INTRODUCTION

Outdoor PM2.5 is a leading contributor to the global burden 
of disease,1 but less is known about the long-term health 
effects of other particulate air pollutants, including UFPs 
and BC. Outdoor UFPs contribute little to particle mass con-
centrations; consequently, exposures are typically measured 
as UFP number concentrations (i.e., number of particles/
cm3). Extremely high numbers of UFPs can be present in a 
given volume of air (e.g., hundreds of thousands of particles/
cm3), and these particles deposit efficiently in human lungs 
where they contribute to oxidative stress and inflammatory 
responses.2–5 Furthermore, UFPs can translocate from the 
lung into the systemic circulation where they can trigger 
inflammatory responses throughout the body, including in 
the heart and brain.3,5–8 Additional evidence suggests that 
UFPs can reach the brain directly via translocation through 
the olfactory nerve.8–11

To date, a small number of studies have used LUR mod-
els12–16 to evaluate the long-term health effects of outdoor 
UFPs, and existing evidence supports possible associations 
with incident myocardial infarction, heart failure, hyperten-
sion, and brain tumors with less consistent evidence observed 
for respiratory outcomes.17–20 Although these studies generally 
suggest that long-term exposures to outdoor UFPs may have 
important health effects, the LUR models used in the previous 
North American studies are limited in a number of ways. 
First, these models were based on mobile monitoring data 
collected during morning (7–10 a.m.) and evening routes (3–6 
p.m.) on weekdays.12,13,21,22 As a result, these models likely 
overestimate true long-term exposures, as they do not capture 
evenings and weekends when outdoor UFP concentrations 
may be lower. Moreover, this limitation may obscure esti-
mates of absolute concentration levels relevant to health out-
comes, particularly if threshold-type concentration-response 
relationships are present. A second limitation of these models 

is that they were not backcast to estimate historical UFP con-
centrations; as a result, previous analyses assumed a constant 
spatial distribution over time, which likely contributed to 
exposure measurement error in the analyses. Other studies 
of the long-term health effects of UFPs also have important 
limitations. Specifically, Ostro and colleagues reported a 
positive association between outdoor UFP concentrations and 
ischemic heart disease mortality in the California Teachers 
Study Cohort, but the spatial resolution of exposure estimates 
in this study was 4 km.23 Given the high spatial variability 
of UFPs within cities, a 4-km scale is too broad to capture 
fine-scale spatial variations in population-level exposures. 
Similarly, Pond and colleagues16 reported positive associa-
tions between outdoor UFPs and nonaccidental and cause-
specific mortality on a national level in the United States, 
but exposures were aggregated to the census tract level, 
and HRs for UFPs were sensitive to the inclusion of PM2.5. 
More recently, a cohort study in the Netherlands15 reported 
positive associations between long-term exposures to outdoor 
UFPs and nonaccidental and cause-specific mortality (e.g., 
respiratory, cardiovascular, and lung cancer), but correlations 
between UFP number concentrations and other air pollutants 
were sometimes high, and information on UFP size was not 
included. None of the existing epidemiological studies for 
outdoor UFP number concentrations include data for UFP 
size. This limitation is important because UFP size could be 
an important confounding variable in epidemiological studies 
of outdoor UFP number concentrations given that UFP size is 
inversely correlated with UFP number concentrations (i.e., 
particles tend to be smaller at higher number concentrations) 
and could be independently associated with mortality (i.e., 
at a given number concentration, smaller UFPs may be more 
harmful than larger UFPs, or vice versa). As such, failure to 
adjust for UFP size in epidemiological analyses could bias 
health risk estimates for outdoor UFP number concentrations. 
This issue also relates more broadly to issues of confounding 
when examining exposures with multiple versions of treat-
ment,24,25 which is discussed in more detail later in this report.

Compared to outdoor UFPs, more studies have examined 
the long-term health effects of outdoor BC concentrations. In 
particular, a meta-analysis of eight epidemiological studies 
reported a 6.1% (95% CI: 4.9, 7.3) increase in all-cause mortal-
ity per 1-µg/m3 increase in outdoor elemental carbon (EC)/BC 
concentrations.26 A more recent study also reported a positive 
relationship between BC and cardiovascular mortality using 
a dispersion model to estimate exposures.27 However, in their 
meta-analysis, Hoek and colleagues26 noted that most existing 
studies of EC/BC estimated exposures at the city scale and did 
not account for small-scale spatial variations related to land 
use or built environment factors such as proximity to major 
roads. Capturing small-scale spatial variations in pollutant 
concentrations is a major challenge in studies of the long-term 
health effects of traffic-related air pollutants, and our project 
addressed this challenge in several important ways.

Specifically, we developed new exposure models to predict 
long-term exposures to outdoor UFPs (number concentrations 
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and particle size) and BC across Canada’s two largest cities, 
Toronto and Montreal, using mobile monitoring campaigns 
conducted over an entire year, including all days of the 
week and most times of the day. Next, we developed new 
exposure models combining both traditional (i.e., LUR) and 
machine learning methods (i.e., CNN) using digital images28 
and applied these models (both separately and combined) in 
a new epidemiological study of outdoor UFPs and BC and 
nonaccidental and cause-specific mortality in the CanCHEC. 
As part of this process, we examined how different exposure 
modeling approaches affected observed associations between 
outdoor UFPs and BC and mortality as well as the sensitivity of 
health risk estimates to neighborhood-level mobility patterns 
and backcasting exposures over the duration of follow-up. 
Concentration-response curves for long-term exposures to 
outdoor UFPs and BC and mortality were also generated to 
evaluate the shapes of these relationships.

SPECIFIC AIMS

The overall objective of this study was to estimate associ-
ations between long-term exposures to outdoor UFPs and BC 
and mortality in Montreal and Toronto, Canada, including an 
evaluation of several different exposure modeling approaches. 
Our specific aims were as follows:

1.	 To develop new exposure models to predict within-city 
spatial variations in long-term average outdoor UFPs and 
BC in Montreal and Toronto, Canada, using data collected 
during large-scale mobile monitoring campaigns — New 
models included traditional LUR models, machine 
learning models trained using aerial images labeled with 
pollutant measurements, and combined models. Mobile 
NO2 and O3 and fixed-site UFP and BC monitoring were 
also conducted, but equipment failures and COVID-19 
restrictions resulted in incomplete monitoring and 
precluded incorporation into the health analysis (lessons 
learned related to equipment failures are described in 
Appendix B; available on the HEI website).

2.	 To generate backcasted exposure estimates for outdoor 
UFPs and BC based on historical traffic emissions data

3.	 To compare and quantify differences between our final 
UFP model predictions and past models developed for 
UFPs in Montreal and Toronto that were based on mobile 
monitoring limited to weekdays and rush hour periods

4.	 To integrate mobility data into our exposure models 
through the development of mobility-weighted exposure 
surfaces that capture neighborhood-level trends in 
population mobility (and changes in mobility patterns 
over time) informed by travel survey data collected from 
random samples of Montreal and Toronto residents every 
5 years

5.	 To link new UFP and BC exposure models (i.e., LUR 
models, machine learning models, and combined models 
with and without mobility weighting and with and with-
out backcasting) to the CanCHEC cohort to estimate asso-

ciations with nonaccidental and cause-specific mortality  
adjusting for relevant confounding factors and other 
outdoor air pollutants (i.e., PM2.5, Ox)

CHANGES TO THE ORIGINAL STUDY AIMS

Our original plan was to compare our new models to past 
measurements for outdoor UFPs and BC and new fixed-site 
measurements collected concurrently with mobile monitor-
ing, but we reconsidered this approach for several reasons. 
First, existing historical measurements for outdoor UFPs and 
BC do not adequately reflect true annual average outdoor 
concentrations (e.g., because monitoring was limited to week-
days, during daytime hours, with limited annual coverage), 
and thus differences between historical measurements and 
predicted values from our new models would be strongly 
influenced by systematic differences in the design of the pre-
vious sampling campaign and our new campaign. Therefore, 
instead of comparing our new models to past measurements, 
we compared our new UFP models to past UFP models in 
Montreal and Toronto.12,13 The purpose of this analysis was to 
identify potential systematic differences in predictions across 
each study area to aid in interpreting any future discrepancies 
in the results of epidemiological analyses based on the new 
models. This comparison provides important information on 
spatial differences in predicted long-term average outdoor 
UFP number concentrations resulting from a more rigorous 
monitoring scheme including all days of the week and most 
times of day (our new model) and a past scheme with a more 
limited sampling protocol.12,13 This comparison was only con-
ducted for UFPs because past models do not exist for BC in 
Montreal and Toronto. Second, we did not compare our new 
model predictions to fixed-site UFP or BC measurements col-
lected concurrently with mobile monitoring because we were 
unable to conduct winter fixed-site measurements owing to 
COVID-19 restrictions that prevented in-person work (i.e., 
working together in the laboratory or driving together in vehi-
cles used to set up and take down fixed-site monitors). The 
fixed-site data we collected were limited to 2 weeks during 
the summer months in each city and does not reflect a long-
term average. Moreover, many of the UFP instruments failed 
during fixed-site monitoring owing to issues related to high 
relative humidity.

NO2 and O3 mobile monitoring was limited by technical 
issues with the monitoring equipment, and we were unable 
to develop new models for outdoor NO2 and O3 in Montreal 
(additional information in the lessons learned section of 
Appendix B). However, we completed several additional tasks 
that were not originally proposed. First, two levels of NO2 and 
O3 sensor calibration were implemented, both in a chamber 
and in the field, against reference instrumentation.29 Using 
chamber test data, a set of mathematical tools were developed 
to correct for sensor noise (wavelet denoising), misalign-
ment (linear and nonlinear), and hysteresis. A predesigned 
sampling strategy, based on spatial and statistical methods, 
was also developed. With respect to UFPs, we developed a 
machine-learning model to predict short-term UFP exposures 
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using street-level images.30 We did so by extracting features 
from images, which were averaged over 10 seconds, and 
combining them with regional air quality and meteorological 
data gathered from a fixed station in Toronto.30

Finally, we added UFP size to our exposure modeling 
and epidemiological analyses to address concerns related to 
confounding bias caused by UFP size. Specifically, because 
UFPs tend to be smaller at higher number concentrations 
and particle size is likely related to toxicity, confounding by 
UFP size seems possible and could result in underestima-
tion or overestimation of the health effects of outdoor UFP 
number concentrations depending on the direction of the 
association with the outcome.31 The issue of UFP size relates 
to the broader topic of exposures with multiple versions of 
treatment and confounding of version of treatment–outcome 
associations, which is addressed in previous publications.24,25 
Specifically, because outdoor UFP number concentrations 
have multiple versions of treatment (i.e., the same UFP num-
ber concentration can be constructed with many different size 
distributions, which may vary in toxicity), we must account 
for possible confounders of the version of treatment–outcome 
associations to avoid confounding bias in health risk estimates 
for outdoor UFP number concentrations. In this case, UFP size 
is a likely confounder of the version of treatment–outcome 
relationships for outdoor UFP number concentrations and 
mortality because UFP size is a cause of the version of treat-
ment for outdoor UFP number concentrations (i.e., the kinds 
of UFPs present) and could also be independently associated 
with the outcome (i.e., smaller UFPs may be more harmful 
than larger UFPs, or vice versa). If we do not adjust for this 
source of confounding bias, health risk estimates for outdoor 
UFP number concentrations will reflect some unknown 
combination of both the total number concentration and the 
version of treatment (i.e., the number of particles present and 
the kinds of particles present). With this in mind, all of the 
exposure models mentioned previously were developed for 
UFP size, and UFP size was included in all epidemiological 
analyses. This is the first study to simultaneously consider 
both UFP number and UFP size in epidemiological analyses 
examining mortality.

STUDY DESIGN AND METHODS

STUDY LOCATIONS

Our study was conducted in the cities of Montreal and 
Toronto, Canada. The Montreal study area included all 
municipalities on the island of Montreal (population 2.0 
million in 2021), and the Toronto study area included the 
post-amalgamation political border of the city of Toronto 
(population 2.8 million in 2021). Both cities border major 
bodies of water, are surrounded by large suburban commu-
nities, and have similar climates (Appendix A, Table A.1; 
available on the HEI website).

EXPOSURE MODEL DEVELOPMENT AND EVALUATION

Mobile Monitoring

We conducted year-long (September 2020 to August 2021) 
mobile monitoring campaigns for outdoor UFP number 
concentrations, UFP size, and BC. Monitoring routes (Appen-
dix A, Figure A.1) were designed to capture a wide variety 
of land use and road types. This was done by dividing the 
study areas into 100  m × 100  m grids, extracting land use 
and traffic parameters for each grid square, and conducting a 
principal component analysis to identify clusters that explain 
the greatest amount of variance in the data (additional meth-
odological details are described in Appendix B). Routes were 
then selected along multiple road types within each of the 
clusters. To obtain measurements representative of annual 
averages, these prespecified routes were monitored repeatedly 
at various times of day between 7 a.m. and 11 p.m. on all days 
of the week, including weekends, and in all four seasons. We 
randomly selected the time of day, day of week, and order 
in which routes were monitored each week. Each monitoring 
route took approximately 1 hour, and 3 to 15 routes were 
completed each week.

Fixed-Site Monitoring

As noted previously, fixed-site monitoring was not possi-
ble during the winter months of 2021 because of the COVID-
19 pandemic (i.e., social distancing requirements prevented 
laboratory and field work). Consequently, fixed-site monitor-
ing data were limited to summer 2021. As a result, these data 
were not used for model development or evaluation. Details 
on the procedures used for fixed-site monitoring are available 
in Appendix B. Descriptive data for monitoring results from 
fixed sites are presented in Appendix A, Table A.2 but are not 
otherwise used or discussed in this report.

Air Pollution Measurements

UFP and BC monitors were time-synched with global 
positioning system monitors and sampled data at 1-second 
resolution. The BC monitor was a microAeth MA350 (https://
aethlabs.com/microaeth/ma350/tech-specs). The UFP mon-
itors were the Naneos Partector 2 (https://www.naneos.ch/
partector2.html) and Testo DiSCmini (https://www.testo 
.com/en-US/testo-discmini/p/133). Both monitors concur-
rently measure UFP number concentrations (particles/cm3) 
and mean UFP size (nm) at a set sampling interval (i.e., 1 
sec) using the same operating principles and were factory-
calibrated for the monitoring campaign. Mean UFP size 
(referred to as UFP size throughout this text) was the mean 
diameter of UFPs sampled during the sampling interval and 
was measured by the monitors using a factory-calibrated ratio 
of currents from charged ultrafine particles.32 This approach 
is different from that of other UFP monitors in that it does 
not estimate the entire size distribution of sampled UFPs. 
Instead, it gives a single value for mean UFP size during the 
sampling interval using an assumed particle size distribution. 

https://aethlabs.com/microaeth/ma350/tech-specs
https://aethlabs.com/microaeth/ma350/tech-specs
https://www.naneos.ch/partector2.html
https://www.naneos.ch/partector2.html
https://www.testo.com/en-US/testo-discmini/p/133
https://www.testo.com/en-US/testo-discmini/p/133
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Fierz and colleagues conducted roadside measurements 
using this approach and a scanning mobility particle sizer 
and observed that mean UFP size measurements from both 
instruments were highly correlated (R2 = 0.99).32 We treated 
data from both the Testo DiSCmini and Naneos Partector 2 
as equivalent because both monitors measure UFPs using the 
same operating principles and were factory-calibrated for the 
monitoring campaign.

For each mobile monitoring run, a BC monitor was mounted 
on the roof of the vehicle, and a UFP monitor was mounted 
inside the vehicle (Nissan Micra for Toronto and Nissan Rogue 
for Montreal) with a sampling tube inlet extended out the rear 
passenger-side window and pointed downward to prevent 
water from entering the instrument. The tube inlets were 
roughly 2 m above and in front of the vehicle tailpipes, but 
the vehicle emissions may have increased air pollution con-
centrations at the tube inlet. However, it is important to note 
that we observed UFP concentrations below 1,000 particles/
cm3 and BC concentrations below 50 ng/m3, suggesting that 
this contribution was not substantial. After each monitoring 
run, instruments were inspected and the data were offloaded 
to local and cloud data storage. Files were inspected, and data 
points associated with instrument error codes or implausible 
temporal or spatial patterns (e.g., constant concentrations) 
were removed from the analysis. Values above and below the 
manufacturer’s reported limits of detection (listed in Appen-
dix Table A.3) were replaced with the upper and half of the 
lower limit of detection, respectively. Instrument drift was 
assessed by conducting monthly zero checks. The monitoring 
quality assurance plan is described in Appendix B.

Data Preprocessing

Air pollution and geospatial position data were joined by 
matching time stamps. Hourly average ambient weather condi-
tions recorded at Automated Surface Observing Systems within 
each study area (Appendix Table A.4) were downloaded using 
the riem package (https://docs.ropensci.org/riem) in version 
4.1.2 of the R statistical computing environment (R Core Team, 
Vienna, Austria) and matched to the monitoring data by time. 
Road networks in each city were divided into 100-m road seg-
ments. The median of all 1-second air pollution measurements 
along a given road segment (i.e., the grand median) and the 
median ambient weather conditions during monitoring were 
assigned to the centroid of the road segment. The median air 
pollution levels were our estimates of annual median ambient 
pollutant levels and are referred to as the observed values for 
the remainder of this text. The unit of analysis for this study 
was annual median ambient pollutant levels at the 100-m road 
segments (i.e., the temporal median of all monitoring data 
along each 100-m road segment). Road segments monitored 
on fewer than six separate days throughout the campaign 
were excluded from the analysis. This value was selected as a 
reasonable trade-off between improving temporal stability and 
maximizing spatial coverage. In total, mobile monitoring data 
were aggregated to 7,051 and 5,819 road segments in Montreal 
and Toronto, respectively.

Six-digit geohash codes were assigned to each road segment 
based on their location, and road segments were randomly 
split by geohash code into training (70%), validation (15%), 
and test (15%) sets. The geohash geocoding system spatially 
splits the globe into cells, each with its own alphanumeric 
code. A cell with a six-digit geohash code is approximately 
1.22 km by 0.61 km. Stratifying the random split by geohash 
code (i.e., geospatial position) increases the independence 
of the test set and reduces the overlap of images from the 
training, validation, and test sets (Appendix Figure A.2), 
which was crucial for training machine learning models. The 
distributions of observed UFP number concentrations and BC 
concentrations were right-skewed and were log-transformed 
for model development. The distribution of observed UFP 
size was not skewed and was not log-transformed.

Image Data for Training CNN

For each road segment centroid, two aerial (i.e., satellite-
view) images were downloaded from Google maps at different 
zoom levels (18 and 19) using the ggmap package (https://rdrr 
.io/cran/ggmap) in R. Zoom 18 and 19 images covered areas 
of approximately 280 m × 280 m and 140 m × 140 m, respec-
tively. Figure 1 shows an example of images at different zoom 
levels for a particular road segment. All CNN models included 
two images as inputs to capture both local (zoom 19) and 
contextual (zoom 18) information. Images were downloaded 
with a resolution of 604 × 640 × 3 (i.e., image height by width 
by color channels) and then resized (256 × 256 × 3) and linked 
to the monitoring data for CNN model training. Image resizing 
was needed to produce an input image size suitable for use 
with the Xception model architecture described below.

For readers unfamiliar with CNNs, a single color image can 
be thought of as three 256 × 256 arrays, one for each color 
channel (red, blue, and green). Each value in each array cor-
responds to the intensity of a particular color for a given pixel 
of the image. The CNN algorithm performs a large number of 
mathematical transformations on the numeric values in these 
arrays (i.e., the pixel data of the images), and, through an 
iterative process, the CNN learns features in the digital images 
that are associated with the desired target (i.e., outcome). In 
this application, the images were color satellite-view images 
centered on road segments, and the target was air pollution 
levels measured at the road segment. Thus, the raw data of 
digital satellite-view images were the numeric values of the 
256 × 256 × 3 arrays, and the mathematical transformations 
may identify different features (i.e., patterns of numbers in 
the arrays), such as roads, if those features are associated with 
air pollution in the training data. The specific mathematical 
transformations performed by a given CNN algorithm will 
depend on the CNN’s model architecture, and the importance 
assigned to the various transformations is the CNN’s model 
weights (i.e., the model parameters). For each iteration during 
model training, the weights are updated using an optimizer 
algorithm intended to minimize the difference between the 
measured target value and the CNN predicted target value. 

https://docs.ropensci.org/riem
https://rdrr.io/cran/ggmap
https://rdrr.io/cran/ggmap
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Various model architectures, initial model weights, and opti-
mizers have been developed by deep learning scientists and 
are available for use in a variety of applications.

Land Use and Traffic Data

Land use and traffic data were extracted using ArcMap 10.8.1 
(Environmental Systems Research Institute Inc., Redlands, CA, 
USA). Data sources included DMTI Spatial (Richmond Hill, 
CA), EMME (INRO, Montreal, Canada), City of Montreal, City 
of Toronto, Canadian National Pollution Release Inventory, 
Statistics Canada, Toronto Transit Commission, and Société de 
Transport de Montréal. Examples of predictor variables included 
average traffic nitrogen oxides (NOx) emissions within 300 m, 
length of railroad within 100 m, residential area within 200 
m, and distance to the nearest highway. Appendix Table A.5 
describes all 32 spatial predictor variables examined in this study 
(buffers examined were 100 m, 200 m, and 300 m). LUR models 
were developed using contemporary land use and traffic values.

Historic Traffic Data

Traffic data were predicted using the traffic emission 
prediction scheme from 2006 to 2020.33,34 This approach uses 
statistical methods and machine learning techniques to gen-
erate yearly traffic counts and traffic-related NOx emissions 
from long-term and short-term traffic counts and aerial images 
(additional details in Appendix B). Historical values of traffic 
NOx emissions for Toronto (2006–2016) and Montreal (2008, 
2013) were used to project model predictions back in time 
(i.e., backcast) given that traffic-related pollutants such as 

UFPs and BC are strongly related to traffic NOx emissions 
(our past studies). For backcast predictions, the other selected 
variables in the LUR models were land use variables, which 
typically have been stable for Montreal and Toronto over the 
past two decades. For example, railroads, airports, major 
highways, residential areas, and industrial areas have largely 
been in the same locations since 2000.

Data Used for Mobility-Weighted Exposure Models

Travel-demand survey data from the Authority Régionale 
de Transport Métropolitain35 and the Transportation Tomorrow 
Survey36 were used to weight exposure surfaces to produce 
mobility-weighted surfaces. These population-weighted sur-
veys provided neighborhood-level (i.e., dissemination area) 
average proportions of time spent away from home and in 
which neighborhoods that time was spent. The Transportation 
Tomorrow Survey (Toronto) data were available for 2001, 2006, 
2011, and 2016. The Authority Régionale de Transport Mét-
ropolitain (Montreal) data were available for 2003, 2008, and 
2013. Exposure estimates in mobility-weighted models reflect 
a weighted average based on the proportion of time spent at 
home and the estimated proportion of time spent away from 
home in a given location based on travel-demand survey data.

LUR Model Development

Generalized additive models37 (e.g., https://rdrr.io/cran/
mgcv) were developed for each city to predict spatial varia-
tions in annual average outdoor UFP number concentrations, 
UFP size, and BC concentrations. Variable selection and 

Figure 1. Example of zoom 19 images (left) and zoom 18 images (right) for a given road segment.

https://rdrr.io/cran/mgcv
https://rdrr.io/cran/mgcv
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model training were conducted using the training datasets 
following the same method for all three measures of outdoor 
air pollution. Regional median ambient temperature, relative 
humidity, and wind speed during monitoring along each road 
segment were included in all models to account for weather-
related temporal variations in air pollution during the moni-
toring campaign. Our monitoring campaign was designed to 
be temporally balanced, but due to the relatively low number 
of visits at certain sites (i.e., as few as six visits), some tem-
poral imbalances occurred between sites. We used temporal 
adjustment to account for chance weather-related temporal 
variations in the monitoring data while developing purely 
spatial models. First, air pollution levels were regressed 
onto each land use parameter (listed in Appendix Table A.5), 
including the weather variables in the model. Parameters 
associated with the air pollutant (95% CI excluding the null) 
without being driven by outliers (predictor variable values 
greater than 2 SD from the mean) became candidate variables. 
All outliers were retained for all model development. To 
reduce possible collinearity, pairs of correlated candidate 
variables were identified (Spearman’s correlation >0.7), and 
those with a lower mean square error (MSE) in the regression 
models were selected for inclusion in the final LUR models. 
All LUR models were trained as Generalized additive models 
estimated using restricted maximum likelihood, and thin 
plate splines were used to allow for nonlinear relation-
ships (limited to three basis functions to avoid overfitting). 
Additional spatial dependencies not captured by land use 
and traffic parameters were modeled by including road seg-
ment latitude and longitude in a tensor product smooth, as 
described by Wood38 (models without latitude and longitude 
were also developed as a sensitivity analysis).

CNN Model Development

CNN models for UFPs (number concentration and size) 
and BC were developed using satellite-view images at two 
different zoom levels. The keras package39 (https://keras.io)  
in Python was used to train models on the training set 
data (70%; 9,300 images for Montreal and 7,330 images for 
Toronto), and hyperparameter tuning was based on MSE in 
the validation set (15%). The Xception model architecture40 
with ImageNet initial weights41 and the Nadam learning rate 
optimizer was used.42 The initial learning rate was 0.0001 
and was reduced if MSE in the validation set plateaued for 
five epochs. The batch size was 128 (32 images per GPU), 
and models were trained for up to 100 epochs (training was 
stopped early if MSE in the validation set plateaued for 10 
epochs). Model weights that resulted in the lowest MSE in 
the validation set were selected. Because the CNN predictions 
did not account for weather-related temporal variations in the 
monitoring data, we used the same approach as a previous 
study43 whereby observed air pollution levels are regressed 
onto the CNN predictions in the validation set with median 
ambient weather conditions during monitoring included in 
the model to account for weather-related temporal variations 
in air pollution (steps illustrated in Figure 2). The coefficients 

from this regression were used to adjust CNN model pre-
dictions for temporal variations in the monitoring data. As 
sensitivity analyses, the LUR models were trained using the 
same approach for temporal adjustment (i.e., training the 
model in the training set without weather parameters and 
then adjusting for weather-related temporal variations in the 
validation set), and both LUR and CNN models were trained 
without any temporal adjustment. All outliers were retained 
for all model development.

Combined Model Development

Final combined models for UFP number concentrations, 
UFP size, and BC in each city were developed by combining 
LUR model predictions with the temporally adjusted CNN 
model predictions. This was done using a linear regression 
model in the validation set:

yi = b0 + b1xLURi + b2xCNNi + ∈i

where xLUR and xCNN are predictions from the LUR and CNN 
models respectively (nonlinear models did not improve model 
performance). These combined models captured information 
from both the LUR and CNN models.

Model Evaluation

We developed city-specific LUR, CNN, and combined 
models for each pollutant in each city. As a sensitivity anal-
ysis, multicity models were developed by pooling data from 
both cities. Predictions (i.e., estimates) from each model were 
generated in the test set and compared to observed values. 
Root mean square error (RMSE) and R2 values were used to 
describe model performance. Model residuals for all data 
were plotted and inspected for spatial clustering.

Prediction Surfaces

Study areas were divided into 100 m × 100 m cells for the 
prediction surfaces. For each cell, land use and traffic param-
eters were extracted and used to generate LUR model pre-
dictions, and satellite-view images at both zoom levels were 
downloaded to generate CNN model predictions. Spatially 
invariant (i.e., constant) annual median temperature, humid-
ity, and wind speed at local airports (i.e., the same data source 
used for weather conditions during monitoring) were used 
for each city when generating predictions. Using invariant 
values assumes a spatially constant temporal structure across 
the study areas and also assumes that predictions of pollutant 
levels under average regional meteorological conditions rep-
resent annual median outdoor pollutant levels. Surfaces from 
the combined models provide estimates of within-city spatial 
variation of annual ambient pollution (i.e., UFP number con-
centration, UFP size, and BC mass concentration).

Examining CNN Model Behavior

CNN models lack the easily interpretable coefficients of 
regression models; thus, we explored model behavior using 

https://keras.io
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Figure 2. Steps used to develop LUR and CNN models. The combined model had an additional step of regressing the step 7 LUR and 
CNN predictions onto observed values in the validation set. CNN = convolutional neural network; LUR = land use regression.

an approach described by Sorek-Hamer and colleagues,44 
which involved modifying digital images and qualita-
tively comparing predicted values to expected values. For 
example, pasting the image of a highway into the image of 
a residential area was expected to increase the predicted 
UFP concentration for the unmodified residential area. 
The resulting prediction was compared to expectations to 
determine if the model behaved in a manner consistent with 
expectations. In addition, we generated CNN model pre-
dictions using images from different time periods (Google 
periodically updates satellite-view images) to explore the 
sensitivity of CNN models to the time of year in which an 
image was captured.

Code Availability for CNN Models

Python code used for training CNNs is available online: https://
github.com/Sweichenthal/HEI-19-1. Additional information on 

training CNNs using the keras package in Python is available 
elsewhere.40

Comparison of New UFP Surfaces to Old UFP Models

To compare predicted annual average outdoor UFP num-
ber concentrations between our new models and previous 
surfaces,12,13 we first used the spatial join function in ArcGIS 
to align previous model results (based on data collected in 
2010–2012) with the polygon shapefiles from our new models. 
We standardized UFP levels predicted by each surface (i.e., 
subtracting each model’s mean value and dividing by its stan-
dard deviation) to facilitate comparisons. We also generated 
maps of differences in predicted outdoor UFP number concen-
trations on the original scale. Given the systematic differences 
between the monitoring campaigns used to develop the 
models (i.e., weekday rush hours only vs. all days and most 

https://github.com/Sweichenthal/HEI-19-1
https://github.com/Sweichenthal/HEI-19-1
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times of day), we did not compare our backcasted estimates to 
historical models.

EPIDEMIOLOGICAL ANALYSIS

Study Population and Mortality Outcomes

Our study population included multiple cycles (1991, 1996, 
2001, and 2006) of the CanCHEC. This dataset was formed by 
linking census long-form questionnaires (which collect data on 
approximately 20% of Canadian households every 5 years) to 
postal code histories and mortality records through the Statis-
tics Canada Social Linkage Data Environment.45–47 Follow-up 
included the 15-year period between 2001 and 2016, and 
the in-scope study population included noninstitutionalized 
respondents (at the time of census collection) under the age of 
90 who lived in Toronto or Montreal for at least 1 year between 
1998 and the end of 2016. Participants were censored at the 
time of death, end of follow-up, or movement out of Montreal 
or Toronto. Residential postal code histories (from mailing 
addresses reported on annual income tax filings) were used to 
account for residential mobility both within and between cities. 
We examined associations between outdoor UFPs and BC and 
several causes of death, including nonaccidental (International 
Classification of Diseases, Tenth Revision (ICD-10): A–R), car-
diometabolic (i.e., circulatory plus diabetes; ICD-10: I10–I69, 
E10–E14), cardiovascular (ICD-10: I10–I69), ischemic heart 
disease (ICD-10: I20–I25), cerebrovascular (ICD-10: I60–I69), 
nonmalignant respiratory (ICD-10: J00–J99), and lung cancer 
(ICD-10: C33–C34). The creation of the CanCHEC dataset was 
authorized by Statistics Canada senior management (reference 
number: 019-2019) as per the Directive on Microdata linkage.

Exposure Assignment

All of the exposure models described for UFP number con-
centrations, UFP size, and BC mass concentrations were linked 
to cohort members using six-digit residential postal codes 
(about the size of a city block face). The 3-year moving average 
exposures were used with a 1-year lag; time-varying exposures 
were used to account for residential mobility within and/or 
between cities. The 1-year lag ensures that estimates of long-
term exposures precede the outcome given that postal codes 
in CanCHEC are updated at year-end. The same approach was 
used to assign exposures to outdoor PM2.5 mass concentrations 
and Ox (combination of NO2 and O3) using exposure models 
previously described.48 Briefly, the PM2.5 estimates were 
from satellite-based aerosol optical depth measurements that 
were subsequently adjusted using ground-based monitoring 
and land use data. NO2 estimates were from a national LUR 
model, and the O3 estimates were from a chemical transport 
model. NO2 reacts with sunlight and oxygen to form O3, and 
as such, ambient concentrations of NO2 and O3 are typically 
inversely correlated.49 Previous research suggests that combin-
ing NO2 and O3 into a single measure of exposure to oxidant 
gases (Ox) is more relevant to mortality than treating them as 
separate exposures.48,50,51 Following the approach of previous 
research,48,50,51 exposure to oxidant gases (i.e., the combined 

oxidant capacity of NO2 and O3) was calculated using weights 
based on their approximate redox potential52:

Ox = 
(1.07 × NO2) + (2.075 × O3)

3.145
.

Exposures for outdoor UFP number concentrations, UFP 
size, and BC were backcasted using historical data for traffic  
emissions (i.e., NOx) available for Toronto (2006–2016) 
and Montreal (2008, 2013). Our main analysis was based 
on combined CNN-LUR models (i.e., the best-performing 
models) using backcasted exposures assigned to residential 
locations. As sensitivity analyses, we also examined models 
with and without backcasting as well as models considering 
neighborhood-level mobility patterns. Specifically, mobility-
weighted models were constructed using travel-demand 
survey data collected at the dissemination area level (stable 
geographic units with a population of approximately 400–700) 
by the Authority Régionale de Transport Métropolitain in Mon-
treal and the Transportation Tomorrow Survey in Toronto.35,36 
These population-weighted surveys provided neighborhood-
level average proportions of time spent away from home and in 
which neighborhoods that time was spent. Toronto data were 
available for 2001, 2006, 2011, and 2016. Montreal data were 
available for 2003, 2008, and 2013. Final mobility-weighted 
exposure surfaces reflected a weighted average based on the 
neighborhood-level proportion of time spent at home and the 
neighborhood-level proportion of time spent away from home 
in a given location based on travel-demand survey data.

Statistical Analysis

Cox proportional hazard models were used to estimate HRs 
for nonaccidental and cause-specific mortality. Follow-up 
time (with calendar time as the time-axis) was accrued begin-
ning on census day 2001 (May 15, 2001) for 1991,1996, and 
2001 CanCHEC members and cohort entry date for members 
of the 2006 CanCHEC (May 16, 2006). Cohort members were 
censored if they moved out of the study area (i.e., Montreal or 
Toronto), were lost to follow-up, reached the end of follow-up 
(December 31, 2016), or died from a cause other than an 
outcome of interest. Separate models were examined for each 
mortality outcome. All analyses were conducted for both cit-
ies combined, and city-specific analyses were not conducted.

The directed acyclic graphs shown in Appendix Figure A.3 
describe the assumed relationship between the main outdoor 
air pollution concentrations of interest and mortality along with 
covariates identified and included as potential confounding fac-
tors or strata variables. Specifically, all models included terms 
for outdoor UFP number concentrations and BC mass concen-
trations and were stratified by age (5-year groups), immigrant 
status, sex, and census cycle and were additionally adjusted for 
education, occupational level, income, marital status, visible 
minority status, and other air pollutants (i.e., PM2.5 and Ox).

48 
Finally, all models were also adjusted for mean UFP size for 
reasons outlined previously. Penalized spline terms were used 
for UFP size to capture potential nonlinear associations between 
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UFP size and mortality. Multiple pollutants were included in 
the Cox models to estimate independent associations between 
the pollutant of interest and mortality while controlling for 
exposure to co-pollutants. Interactions between pollutants (i.e., 
PM2.5, Ox, UFP, and BC) were not explored. With UFP number 
concentration in a model, UFP size was considered an inde-
pendent mortality risk (i.e., while controlling for UFP number 
concentration, variations in UFP size could be associated with 
mortality); thus, UFP size was included as a co-pollutant for the 
main analysis, which sought to estimate the independent risks 
of long-term exposure to UFPs and BC. As sensitivity analyses, 
linear and nonlinear (penalized splines with generalized cross-
validation) terms were examined for UFP size to evaluate the 
impacts on mortality HRs for our main exposures of interest 
(reference exposures for nonlinear terms were the lowest 
exposures in the cohort). In addition, models excluding UFP 
size were also evaluated to examine the magnitude of possible 
confounding bias caused by not adjusting for this variable. To 
compare to previous studies, single-pollutant models were also 
examined for UFP number concentrations and BC. We did not 
examine single-pollutant models for UFP size, as we do not 
think it is appropriate to consider this pollutant on its own 
without UFP number concentrations also in the model.

Nonlinear concentration-response relationships for outdoor 
UFP number concentrations, UFP size, and BC were examined 
using penalized splines with generalized cross-validation to 
select the optimal smoothness parameters. The y-axis of the 
concentration-response curves was the HR, with the lowest 
cohort exposure as the reference exposure level. Multipol-
lutant models were used for concentration-response curves, 
which included UFP number concentrations, UFP size, and BC 
as nonlinear terms. PM2.5 and Ox were included in those multi-
pollutant models as linear terms. STATA version 17.0 was used 
for all analyses except for estimating concentration-response 
curves, which was done using R version 4.0.5.

RESULTS

EXPOSURE MODEL DEVELOPMENT AND EVALUATION

We conducted more than 700 hours of mobile monitoring 
in Montreal and Toronto and retained more than 500 hours 

for model development. Less than 0.5% of BC and UFP mea-
surements were imputed for being above or below instrument 
limit of detection. Monitoring data were retained for 12,870 
road segments (7,051 in Montreal and 5,819 in Toronto) that 
were visited on at least six different days during the campaign 
(Appendix Tables A.6–A.7 and Figures A.4–A.5). Road seg-
ments (100 m) were visited on a median of 10 different days 
(SD = 8) and monitored for a median duration of 63 seconds 
in total (SD = 640). As shown in Table 1. Toronto had slightly 
higher median observed concentrations of UFP and BC and 
larger median observed UFP size. UFP number concentra-
tion, UFP size, and BC mass concentration were monitored 
concurrently, sampled at the same 1-second intervals, and 
aggregated to the same 100-m road segments for model devel-
opment. Models for all three measures were developed using 
the same methods.

Model Evaluation

Variables selected for each LUR model are listed in Table 2, 
and correlations between predictor variables are in Appendix 
Figures A.6–A.11. All city-specific model R2 values and 
combined models coefficients are shown in Table 3 (RMSE 
values are shown in Appendix Table A.8). All models had 
generally similar performance, with combined models having 
the highest R2 values. LUR and CNN model predictions were 
highly correlated (Appendix Table A.9), but the LUR models 
had slightly higher R2 values. The LUR predictions also had 
slightly larger coefficients in the combined models (Table 3) 
and thus made greater contributions to the combined mod-
els than did the CNN predictions. All city-specific models 
had higher R2 than the multicity models trained on pooled 
data (Appendix Table A.10). Conducting the LUR temporal 
adjustment in the validation set instead of the training set and 
omitting the temporal adjustment of LUR and CNN models 
had little impact on model R2 values (Appendix Tables A.11 
and A.12). Maps of median meteorological conditions during 
monitoring show some spatial variation (Appendix Figure 
A.12), and response curves for meteorological terms in the 
models (Appendix Figures A.13 and A.14) show relatively 
modest associations with pollutant concentrations across the 
monitoring sites.

Table 1. Descriptive Statistics for Mobile Monitoring Data for Road Segments with at Least 6 Days of Monitoring

Pollutant City Median (IQR) 1st–99th Percentile

UFP number (particles/cm3) Toronto
Montreal

16,172 (14,991)
14,702 (13,549)

5,008–110,139
3,377–81,623

UFP size (nm) Toronto
Montreal

33.7 (7.7)
29.7 (10.1)

19–50
15–53

BC (ng/m3) Toronto
Montreal

1,225 (1,151)
1,060 (1,006)

232–4,384
115–3,916

BC = black carbon; IQR = interquartile range; UFP = ultrafine particles.
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Table 2. Parameters Included in LUR Models

Parameter Montreal Toronto

UFP number UFP size BC UFP number UFP size BC

Average traffic NOx emissions within 100 m x x x x

Total traffic NOx emissions within 100 m x x

Building area within 100 m x x x x x

Building area within 300 m x

Length of bus routes within 100 m x x x x x

Length of bus routes within 300 m x

Number of bus stops within 100 m x x x

Number of bus stops within 300 m x

Commercial area within 100 m x x x

Commercial area within 300 m x

Distance to nearest highway x

Distance to nearest NOx NPRI chimney x

Distance to nearest PM NPRI chimney x x x x x x

Distance to nearest port x x x

Distance to nearest railroad x x x

Distance to nearest shore x x x

Governmental area within 100 m x x x

Governmental area within 200 m x

Governmental area within 300 m x x

Length of highways within 300 m x x

Industrial area within 300 m x x x

Length of major roads within 100 m x x

Length of major roads within 300 m x x

Number of traffic intersections within 100 m x x x x

Number of traffic intersections within 200 m x

Number of NOx NPRI chimneys within 200 m x x x

Number of PM NPRI chimneys within 200 m x x

Open area within 100 m x x x

Open area within 300 m x x x

Park area within 100 m x x

Continued next page
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Parameter Montreal Toronto

UFP number UFP size BC UFP number UFP size BC

Population within 100 m x x

Population within 300 m x x x x

Length of railroad within 100 m x

Length of railroad within 300 m x x

Residential area within 100 m x x x x x x

Number of restaurants within 200 m x

Number of restaurants within 300 m x x x x

Length of roads within 200 m x x x

Water area within 300 m x x x

Latitude x x x x x x

Longitude x x x x x x

Temperature x x x x x x

Wind speed x x x x x x

Humidity x x x x x x

BC = black carbon; LUR = land use regression; NOx = nitrogen oxides; NPRI = National Pollutant Release Inventory;

PM = particulate matter; UFP = ultrafine particles.

Table 3. Model Performance in Test Set and Combined Model Coefficients

City Pollutant R2 in Test Set Combined Model Coefficients

LUR CNN Combined Intercept LUR CNN

Montreal UFP number (particles/cm3)
UFP size (nm)
BC (ng/m3)

0.59
0.48
0.58

0.49
0.41
0.50

0.60
0.49
0.60

−0.25
   1.49
−0.13

0.57
0.52
0.52

0.46
0.44
0.50

Toronto UFP number (particles/cm3)
UFP size (nm)
BC (ng/m3)

0.71
0.56
0.60

0.66
0.43
0.53

0.73
0.55
0.61

−1.34
−2.34
−0.69

0.65
0.56
0.72

0.49
0.51
0.38

BC = black carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.

Table 4 shows median differences between observed val-
ues (i.e., aggregated monitoring data) and model predictions 
in the test set, and compared to the range of observed values 
of each pollutant, the mean differences were relatively small. 
The median differences for all the Montreal UFP concentration 
models were similar, but the Toronto LUR on average slightly 
underpredicted compared to observed values, whereas the 
Toronto CNN and combined models slightly overpredicted. 
For BC concentrations, all models slightly underpredicted on 
average. This contrast in LUR and CNN UFP concentration 

model behavior between cities was explored further in scatter 
plots of observed and predicted UFP number concentrations 
(Figure 3) and plots of LUR and CNN predictions (Figure 4, 
Appendix Figures A.15 and A.16, Appendix Tables A.13 and 
Table A.14). The Toronto CNN and combined UFP concen-
tration models generated more predictions above 45,000 par-
ticles/cm3 than did the Toronto LUR model. Conversely, the 
Montreal LUR model generated a greater number of elevated 
UFP concentration predictions than did the CNN or com-
bined model. This diverging pattern in UFP concentration 

Table 2, continued. Parameters Included in LUR Models
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predictions was much less pronounced when using multicity 
CNN and LUR models that were trained on both Montreal and 
Toronto data (Appendix Figures A.17–A.20). This suggests 
that the CNN UFP concentration model trained on Toronto 
data alone may have learned features specific to Toronto that 
were associated with elevated UFP concentrations (Appendix 

Figure A.21). BC mass concentration and UFP size predic-
tions did not exhibit the diverging patterns observed for UFP 
concentrations in Figure  4 (Appendix Figures A.22–A.24). 
The Toronto LUR UFP concentration predictions exhibited 
unexpected clustering, but the Toronto CNN model predic-
tions did not (Appendix Figure A.25). This was in part due to 

Table 4. Median Difference Between Observed and Predicted Values in the Test Set and the 5th to 95th Percentile Range 
of Observed Values Used for Model Development (Aggregated Monitoring Data)

Pollutant Model Median Difference (5th, 95th percentile) Observed 5th–95th Percentile Range

Montreal Toronto Montreal Toronto

UFP number 
(particles/cm3)

LUR −338 (−11,332, 17,177) 533 (−12,285, 22,961) 41,195 46,815

CNN −232 (−8,948, 24,100) −1,530 (−18,211, 16,988)

Combined −125 (−8,924, 21,220) −770 (−20,864, 16,063)

UFP size (nm) LUR −0.35 (−9.18, 10.14) −0.06 (−6.37, 6.80) 27 21

CNN −0.79 (−10.17, 11.83) 0.72 (−6.64, 8.75)

Combined −0.8 (−9.64, 10.20) 0.54 (−5.96, 7.37)

BC (ng/m3) LUR 51 (−617, 1,087) 71 (−812, 1,282) 2,512 2,750

CNN 91 (−511, 1,331) 44 (−818, 1,312)

Combined 75 (−462, 1,156) 40 (−1,031, 1,202)

BC = black carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles. 

Figure 3. Comparing observed to predicted UFP number concentrations in Toronto (A) and Montreal (B) with legends showing model 
performance in the test set. PNC = particle number concentration; UFP = ultrafine particles.
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some of the test set data being clustered along major highways 
(Appendix Figures A.26 and A.27) that had distinctly ele-
vated values of vehicle traffic (Appendix Figure A.28), which 
was an important variable the LUR model (Appendix Figure 
A.29). The same clustered test set did not lead to clustered 
CNN model predictions because CNNs are not trained on 
distinct categories of parameters but instead learn complex 
features in digital images. Slopes and intercepts of the scatter 
plots are listed in Appendix Table A.15. Model errors were 
mapped and did not appear to be spatially clustered (Appen-
dix Figures A.30–A.32).

Prediction Surfaces

Figures 5, 6, and 7 show the predicted surfaces for outdoor 
UFP number concentrations (Figure 5), UFP Size (Figure 6), 
and BC (Figure 7) for the LUR, CNN, and combined models. 
Spatial variations in differences between LUR and CNN 
predictions are shown in Appendix Figures A.33–A.35 and 
show that for major highways, the Montreal CNN model 
consistently generated higher UFP number concentration pre-
dictions than did the LUR model, whereas for Toronto it was 
the opposite. LUR surfaces appeared more spatially smooth 
than CNN surfaces, but removing latitude and longitude from 
LUR models resulted in less spatial smoothing (Appendix 

Figures A.36–A.38) and reduced the elevated UFP number 
concentration predictions in northwestern Toronto. CNN 
model predictions using modified images were generally 
consistent with expectations (Appendix Figures A.39–A.42), 
though predictions appeared to be somewhat sensitive to the 
season in which images were captured (Appendix Figures 
A.43 and A.44).

Mobility Weighting and Backcasting

Mobility-weighted surfaces are shown in Appendix 
Figures A.45–A.47. In general, mobility weighting increased 
lower predictions (i.e., if you live in a low-pollution area, 
leaving your house tends to increase your exposure) and 
decreased high predictions (i.e., if you live in a high-pollution 
area, leaving your house tends to decrease your exposure) 
for UFP number concentrations and BC (Appendix Figures 
A.48–A.51), which resulted in smoother surfaces. Historical 
traffic emissions were higher than contemporary levels, 
resulting in higher predicted concentrations in the back-
casted surfaces, though less so for Montreal than for Toronto 
(Appendix Figures A.52, A.54, A.55, and A.57). Clear histor-
ical changes in the spatial distribution of UFP size were not 
apparent in our models (Appendix Figures A.53 and A.56).

Figure 4. Comparing predictions for outdoor UFP number concentrations from LUR and CNN models in the test set in Montreal and 
Toronto. The Pearson correlation between LUR and CNN model predictions was 0.80 for Montreal and 0.86 for Toronto (panel A).  
A histogram of observed values is shown in panel B for each city. CNN = convolutional neural network; LUR = land use regression; 
PNC = particle number concentration; UFP = ultrafine particles.
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Figure 5. Exposure surfaces for 
predicted annual average outdoor 
UFP number concentrations in 
Toronto (A) and Montreal (B)  
for the LUR, CNN, combined 
models, mobility-weighted 
combined models, and combined 
model backcasted to 2008. CNN =  
convolutional neural network; 
LUR = land use regression; UFP = 
ultrafine particles.
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Figure 6. Exposure surfaces for 
predicted annual average outdoor 
UFP size (nm) in Toronto (A) and 
Montreal (B) for the LUR, CNN, 
combined models, mobility-weighted 
combined models, and combined 
model backcasted to 2008. CNN = 
convolutional neural network; LUR = 
land use regression; UFP = ultrafine 
particles.
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Figure 7. Exposure surfaces for 
predicted annual average outdoor 
BC (ng/m3) in Toronto (A) and 
Montreal (B) for the LUR, CNN, 
combined models, mobility-
weighted combined models, and 
combined model backcasted 
to 2008. BC = black carbon; 
CNN = convolutional neural 
network; LUR = land use regression.
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Figure 8. Comparison of the new model for outdoor UFP number concentrations in Montreal (combined LUR-CNN model without 
backcasting or mobility weighting) with the previous model based on data collected in 2011–2012 on weekdays during rush-hour 
periods. Panels A and B show standardized concentrations, and panel C shows the spatial distribution of differences on the original 
scale. CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
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Figure 9. Comparison of the new model for outdoor UFP number concentrations in Toronto (combined model without backcasting or 
mobility weighting) with the previous model based on data collected in 2010–2011 on weekdays during rush-hour periods. Panels A and B 
show standardized concentrations, and panel C shows the spatial distribution of differences on the original scale. UFP = ultrafine particles.
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Comparison of New UFP Models to Previous Models

Comparisons of spatial variations in long-term average out-
door UFP number concentrations based on our new models 
and our previous models are shown in Table 5 and Figures 8 
and 9. As expected, the focus of past campaigns on week-
days and rush-hour periods resulted in past models predicting 
higher concentrations than our new models, which captured 
all days of the week and most times of the day. Linear regres-
sion models comparing predictions from the new models to 
predictions from the old models had relatively low R2 values 
(0.19 for Toronto and 0.18 for Montreal). Nevertheless, slopes 
of linear models relating the two models were reasonably 
high (0.70 for Toronto and 0.97 for Montreal), and the overall 
spatial patterns detected by both models were similar with 
elevated concentrations close to roadways and areas close to 
the airport in both cities. Although the aim of both the old and 
new models was to capture spatial variations in annual aver-
age outdoor UFP number concentrations, there were several 
important differences in how these models were developed 
that likely contributed to the low R2 values. Specifically, the 
old models were trained using monitoring data collected only 
during weekday rush hour periods over a limited period of 
time (approximately 100 hours of monitoring), whereas the 
new models were trained using monitoring data from all days 
of the week and over a greater period of time (more than 500 
hours of monitoring). Thus, although the models generally 
agree on areas of high and low concentrations (i.e., slope), 
there is variability in this agreement (i.e., low R2). Impor-
tantly, the new models were trained using monitoring data 
that is likely more representative of annual average outdoor 
UFP number concentrations than the monitoring data used to 
train the old models.

EPIDEMIOLOGICAL ANALYSIS

Our study population included 1,562,960 adults followed 
for a total of 22,848,100 person-years with 174,240 nonacci-
dental, 46,270 cardiovascular, 51,790 cardiometabolic, 26,570 
ischemic heart disease, 9,310 cerebrovascular, 14,830 respi-
ratory, and 16,790 lung cancer deaths occurring during the 
follow-up period. Descriptive statistics for cohort members 
are shown in Table  6, including mean standard deviation 

concentrations of outdoor air pollutants assigned at baseline 
(from our main combined backcasted model assigned to res-
idential locations). At baseline, annual average outdoor UFP 
number concentrations ranged from approximately 3,200 to 
162,000 particles/cm3, UFP size ranged from 18 to 50 nm, and 
BC ranged from 114 to 5,264 ng/m3. Mean outdoor PM2.5 mass 
concentrations were 10.16 µg/m3 with a standard deviation of 
only 1.56 µg/m3; therefore, we do not present HRs for PM2.5, 
as there was little within-city spatial variation. Correlations 
between outdoor air pollutants are shown in Table  7; UFP 
number concentrations were inversely correlated with UFP 
size (r = −0.54) and were weakly correlated with other air 
pollutants (0.10 <r <0.38). BC was moderately correlated with 
both PM2.5 (r = 0.42) and Ox (r = 0.57).

Main Analysis (Based on Combined LUR-CNN Models 
with Backcasting)

Hazard ratios describing associations observed between 
outdoor UFP number concentrations, BC, and mortality 
are shown in Table 8. Outdoor UFP number concentrations 
(scaled per 10,000 particles/cm3) were positively associated 
with all mortality outcomes with the strongest association 
observed for respiratory (HR = 1.174, 95% CI = 1.130, 1.220) 
and ischemic heart disease mortality (HR = 1.094, 95% CI: 
1.062, 1.126). BC was not associated with increased risks 
of respiratory or lung cancer mortality, but small positive 
associations were observed for the other mortality outcomes. 
HRs for BC decreased with the inclusion of other air pollut-
ants in the models, likely owing to the moderate correlation 
between BC and Ox along with the positive association of Ox 
with all mortality outcomes except lung cancer (Appendix 
Table A.16). HRs for UFP number concentrations increased 
in multipollutant models owing to negative confounding by 
UFP size, which is discussed below.

Table 9 shows the HRs for outdoor UFP number concen-
trations with and without adjusting for mean UFP size using 
a linear or spline term. For all mortality outcomes except 
lung cancer, HRs were considerably lower when UFP size 
was not included in the model. This was particularly true for 
cerebrovascular mortality where confounding by UFP size 
(i.e., not adjusting for UFP size) resulted in a null association 

Table 5. Mean Difference Between Outdoor UFP Number Concentrations Predicted from New Combined 
LUR-CNN Models and Previous Models for Toronto and Montreala

City Mean Difference
(95% CI)

Slope of Linear  
Model

Intercept of Linear  
Model

R2

Toronto −17,054
(−17,171, −16,938)

0.70 21,124 0.19

Montreal −14,783
(−14,882, −14,683)

0.97 15,158 0.18

CI = confidence interval; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.
a Mean difference calculated as new model minus previous model. Previous models are described in references 12 and 13.
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Table 6. Cohort Descriptive Statistics

3-Year Mean (SD) Annual Residential Backcasted Exposurea

Person-Yearsb

UFP Number
(particles/cm3)

UFP Size 
(nm)

BC
(ng/m3)

PM2.5

(ug/m3)
Ox

(ppb)

All

22,848,100 13,982 (6,229) 33.22 (3.43) 1,109 (552) 10.16 (1.56) 35.16 (3.66)

Sex

Female 12,324,900 13,994 (6,240) 33.22 (3.44) 1,111 (554) 10.17 (1.54) 35.14 (3.63)

Male 10,523,200 13,968 (6,217) 33.23 (3.43) 1,107 (550) 10.14 (1.58) 35.17 (3.68)

Age group (years)

25 to 29 2,237,100 14,337 (6,334) 33.15 (3.36) 1,139 (567) 10.07 (1.62) 35.23 (3.87)

30 to 39 5,572,300 14,069 (6,351) 33.28 (3.39) 1,125 (560) 10.11 (1.61) 35.28 (3.73)

40 to 49 5,600,400 13,828 (6,172) 33.30 (3.45) 1,095 (543) 10.17 (1.55) 35.18 (3.61)

50 to 59 4,188,800 13,864 (6,299) 33.21 (3.47) 1,090 (543) 10.19 (1.52) 35.09 (3.59)

60 to 69 3,063,500 13,961 (6,192) 33.14 (3.48) 1,096 (542) 10.23 (1.54) 35.07 (3.58)

70 to 79 1,768,100 13,979 (5,923) 33.13 (3.43) 1,117 (556) 10.22 (1.50) 34.98 (3.54)

80 to 89 417,800 14,094 (5,950) 33.12 (3.37) 1,148 (576) 10.10 (1.43) 34.77 (3.44)

Visible minority status

White or Aboriginal 16,954,300 13,705 (5,792) 33.05 (3.41) 1,081 (542) 10.11 (1.65) 34.78 (3.67)

Visible minority 5,893,700 14,779 (7,288) 33.72 (3.44) 1,189 (572) 10.29 (1.24) 36.27 (3.39)

Immigrant status

Nonimmigrant 12,172,200 13,664 (5,404) 32.86 (3.42) 1,033 (503) 9.97 (1.72) 34.37 (3.64)

Immigrant 10,675,800 14,341 (7,030) 33.63 (3.40) 1,195 (591) 10.39 (1.30) 36.12 (3.43)

Marital status

Single 4,550,000 14,610 (6,118) 32.91 (3.33) 1,152 (576) 10.25 (1.53) 35.15 (3.76)

Common law 1,862,500 13,889 (5,089) 32.46 (3.34) 1,004 (496) 9.71 (1.79) 33.82 (3.66)

Married 13,043,500 13,662 (6,409) 33.50 (3.45) 1,098 (540) 10.18 (1.53) 35.40 (3.57)

Separated 664,200 14,624 (6,586) 33.29 (3.47) 1,201 (603) 10.29 (1.53) 35.52 (3.69)

Divorced 1,536,500 14,514 (6,163) 32.79 (3.41) 1,134 (580) 10.17 (1.57) 34.88 (3.69)

Widowed 1,191,300 14,121 (5,922) 33.08 (3.46) 1,136 (571) 10.26 (1.48) 35.06 (3.55)

Education attainment 

Not completed high 
school

5,766,200 14,174 (6,389) 33.10 (3.48) 1,127 (565) 10.35 (1.49) 35.37 (3.67)

High school with or 
without trades certificate

6,903,900 13,973 (6,379) 33.17 (3.53) 1,087 (542) 10.11 (1.57) 35.08 (3.66)

Continued next page
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3-Year Mean (SD) Annual Residential Backcasted Exposurea

Person-Yearsb

UFP Number
(particles/cm3)

UFP Size 
(nm)

BC
(ng/m3)

PM2.5

(ug/m3)
Ox

(ppb)

Postsecondary 
nonuniversity 4,149,000 13,876 (6,269) 33.31 (3.47) 1,091 (548) 10.01 (1.61) 35.04 (3.65)

University degree 6,029,000 13,865 (5,835) 33.34 (3.23) 1,130 (551) 10.14 (1.55) 35.12 (3.63)

Occupational level  

Management 1,947,900 13,525 (6,097) 33.38 (3.28) 1,089 (548) 10.08 (1.65) 35.14 (3.68)

Professional 3,661,100 13,683 (5,641) 33.35 (3.28) 1,110 (538) 10.13 (1.59) 35.08 (3.66)

Skilled, technical, 
supervisory 4,209,800 13,814 (6,301) 33.30 (3.48) 1,094 (547) 10.09 (1.60) 35.16 (3.68)

Semiskilled 4,959,500 14,166 (6,676) 33.26 (3.52) 1,112 (555) 10.16 (1.53) 35.33 (3.65)

Unskilled 1,607,300 14,411 (6,546) 33.24 (3.49) 1,174 (591) 10.29 (1.49) 35.49 (3.70)

Not applicable 6,462,500 14,126 (6,087) 33.04 (3.43) 1,107 (550) 10.20 (1.53) 34.99 (3.61)

Income adequacy quintile 

1st quintile (lowest) 4,918,000 14,735 (6,423) 33.04 (3.38) 1,177 (587) 10.29 (1.48) 35.37 (3.70)

2nd quintile 4,689,800 14,198 (6,446) 33.22 (3.48) 1,131 (563) 10.22 (1.49) 35.33 (3.63)

3rd quintile 4,459,400 13,883 (6,344) 33.28 (3.52) 1,096 (544) 10.14 (1.54) 35.18 (3.64)

4th quintile 4,220,500 13,587 (6,112) 33.31 (3.50) 1,068 (526) 10.07 (1.59) 35.05 (3.65)

5th quintile (highest) 4,560,400 13,334 (5,611) 33.29 (3.28) 1,058 (518) 10.05 (1.70) 34.80 (3.63)

BC = black carbon; SD = standard deviation; Ox = oxidant gases; PM2.5 = particulate matter ≤2.5 μm in aerodynamic diameter; UFP = ultrafine particles.
aAll columns showing mean (sd) are the exposure values at cohort entry.
bThe person-years column was rounded to the nearest 100 for confidentiality.

Table 7. Correlations Between Air Pollutants 
Assigned at Baseline (Combined LUR-CNN 
Backcasted)

UFP 
Number

UFP 
Size BC Ox PM2.5

UFP 
Number

1

UFP Size −0.54 1

BC 0.38 0.09 1

Ox 0.17 0.22 0.57 1

PM2.5 0.10 0.17 0.42 0.51 1

BC = black carbon; Ox = oxidant gases; PM2.5 = particulate 
matter ≤2.5 μm in aerodynamic diameter; UFP = ultrafine 
particles.

Table 6 continued. Cohort Descriptive Statistics

Table 8. Hazard Ratios for Long-Term Exposures to Outdoor UFP 
Number Concentrations, BC, and Mortalitya

Cause of Mortality

Hazard Ratio (95% CI)

UFP Number
(per 10,000  

particles/cm3)
BC

(per 500 ng/m3)

Nonaccidental 1.073 (1.061, 1.085) 1.009 (1.004, 1.015)

Cardiovascular 1.069 (1.047, 1.094) 1.015 (1.004, 1.027)

Cardiometabolic 1.075 (1.052, 1.098) 1.015 (1.004, 1.025)

Ischemic heart disease 1.094 (1.062, 1.126) 1.009 (0.995, 1.025)

Cerebrovascular 1.061 (1.007, 1.117) 1.025 (0.999, 1.052)

Respiratory 1.174 (1.130, 1.220) 0.979 (0.959, 0.999)

Lung cancer 1.057 (1.017, 1.098) 0.987 (0.967, 1.008)

BC = black carbon; CI = confidence interval; UFP = ultrafine particles.
aAll models included sociodemographic variables, PM2.5, Ox, UFP size, and 

either BC or UFP number concentrations.
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Table 9. Hazard Ratios for Outdoor UFP Number Concentrations (per 10,000 particles/cm3) and Mortality with and 
without Controlling for UFP Sizea

Cause of Mortality

Hazard Ratio for UFP Number (95% CI)

No Adjustment for
UFP Size

Linear Adjustment  
for UFP Size

Nonlinear Adjustment for 
UFP Size

(main analysis)

Nonaccidental 1.034 (1.024, 1.043) 1.052 (1.040, 1.064) 1.073 (1.061, 1.085)

Cardiovascular 1.017 (1.002, 1.034) 1.055 (1.033, 1.076) 1.069 (1.047, 1.094)

Cardiometabolic 1.022 (1.007, 1.040) 1.061 (1.040, 1.082) 1.075 (1.052, 1.098)

Ischemic heart disease 1.022 (1.000, 1.045) 1.082 (1.052, 1.110) 1.094 (1.062, 1.126)

Cerebrovascular 0.986 (0.949, 1.026) 1.041 (0.991, 1.092) 1.061 (1.007, 1.117)

Respiratory 1.092 (1.061, 1.123) 1.143 (1.105, 1.185) 1.174 (1.130, 1.220)

Lung cancer 1.054 (1.026, 1.084) 1.040 (1.002, 1.078) 1.057 (1.017, 1.098)

CI = confidence interval; UFP = ultrafine particles.
aAll models included sociodemographic variables, PM2.5, Ox, and BC.

with outdoor UFP number concentrations. UFP number con-
centrations and UFP size were each considered as potential 
risk factors for mortality; thus, they were included in multi-
pollutant models in the main analysis for BC. HRs for BC and 
mortality are shown in Table 10 with and without adjustment 
for UFP size. In this case, adjusting for UFP size decreased 
HRs for BC only slightly, with weaker associations observed 
between BC and nonaccidental, cardiometabolic, cardiovas-
cular, ischemic heart disease, and cerebrovascular mortality 
after adjustment for UFP size. Table  11 compares the HRs 
of single-pollutant models to the HRs of the main analysis 

that included co-pollutants (i.e., multipollutant models). In 
single-pollutant models, UFP number concentrations were 
associated with all mortality outcomes except cerebrovascu-
lar mortality, and adjusting for co-pollutants resulted in these 
associations becoming stronger, which included an associa-
tion with cerebrovascular mortality. BC mass concentrations 
were associated with all mortality outcomes except lung 
cancer, but when adjusting for co-pollutants, the associations 
became weaker, with ischemic heart disease, cerebrovascular, 
and respiratory mortality becoming null in the multipollutant 
models.

Table 10. Hazard Ratios for BC (per 500 ng/m3) and Mortality with and without Controlling for UFP Sizea

Cause of Mortality

Hazard Ratios for BC (95% CI)

No Adjustment  
for UFP Size

Linear Adjustment for 
UFP Size

Nonlinear Adjustment for 
UFP Size

(main analysis)

Nonaccidental 1.018 (1.012, 1.024) 1.015 (1.008, 1.020) 1.009 (1.004, 1.015)

Cardiovascular 1.025 (1.015, 1.037) 1.019 (1.007, 1.030) 1.015 (1.004, 1.027)

Cardiometabolic 1.025 (1.015, 1.035) 1.018 (1.007, 1.029) 1.015 (1.004, 1.025)

Ischemic heart disease 1.023 (1.008, 1.037) 1.012 (0.996, 1.026) 1.009 (0.995, 1.025)

Cerebrovascular 1.041 (1.016, 1.067) 1.031 (1.005, 1.057) 1.025 (0.999, 1.052)

Respiratory 0.995 (0.975, 1.015) 0.985 (0.965, 1.005) 0.979 (0.959, 0.999)

Lung cancer 0.988 (0.969, 1.007) 0.991 (0.971, 1.011) 0.987 (0.967, 1.008)

BC = black carbon; CI = confidence interval; UFP = ultrafine particles.
aAll models included sociodemographic variables, PM2.5, Ox, and UFP number concentrations.
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Table 11. Hazard Ratios for Outdoor UFP Number Concentrations, BC, and Mortality in Single-Pollutant Models Using 
the Main Combined LUR-CNN Exposure Modela

Cause of Mortality

Hazard Ratio (95% CI)

UFP Number
(per 10,000 particles/cm3)

BC
(per 500 ng/m3)

Single-Pollutant 
Model

Multipollutant 
Model

Single-Pollutant  
Model

Multipollutant  
Model

Nonaccidental 1.050 (1.041, 1.057) 1.073 (1.061, 1.085) 1.031 (1.026, 1.035) 1.009 (1.004, 1.015)

Cardiovascular 1.043 (1.028, 1.059) 1.069 (1.047, 1.094) 1.044 (1.035, 1.053) 1.015 (1.004, 1.027)

Cardiometabolic 1.047 (1.033, 1.062) 1.075 (1.052, 1.098) 1.044 (1.035, 1.052) 1.015 (1.004, 1.025)

Ischemic heart disease 1.050 (1.029, 1.073) 1.094 (1.062, 1.126) 1.052 (1.040, 1.063) 1.009 (0.995, 1.025)

Cerebrovascular 1.021 (0.986, 1.057) 1.061 (1.007, 1.117) 1.046 (1.027, 1.066) 1.025 (0.999, 1.052)

Respiratory 1.100 (1.069, 1.128) 1.174 (1.130, 1.22) 1.034 (1.019, 1.051) 0.979 (0.959, 0.999)

Lung cancer 1.041 (1.015, 1.069) 1.057 (1.017, 1.098) 0.989 (0.974, 1.004) 0.987 (0.967, 1.008)

BC = black carbon; CI = confidence interval; UFP = ultrafine particles.
aAll single-pollutant models are adjusted for sociodemographic variables. The main multipollutant models are shown for comparison and 

adjusted for sociodemographic variables, PM2.5, Ox, UFP size, and either BC or UFP number concentrations.

Concentration-response relationships between outdoor 
UFP number concentrations, UFP size, and mortality out-
comes are shown in Figures 10 and 11 along with the joint 
distribution of UFP size and UFP number concentrations. For 
nonaccidental mortality, the concentration-response curve 
for UFP number concentrations flattens and decreases at ele-
vated UFP levels (above 22,500 particles/cm3), whereas the 
concentration-response curve for UFP size increases contin-
uously as UFP size increases from approximately 10 nm to 40 
nm. As shown in the I panels of Figures 10 and 11, the distri-
bution of UFP size was heterogeneous across the range of UFP 
number concentrations, with a lower proportion of the larger 
UFPs (i.e., those most strongly associated with mortality)  
present at higher UFP number concentrations. This likely 
explains the observed decrease in the concentration-
response curve observed at higher number concentrations 
in the A panels of Figures  10 and 11 (i.e., the curve for 
UFP number concentrations needs to decrease at higher 
concentrations to reflect the fact that the size of particles 
present at this concentration is not as strongly associated 
with mortality). A similar pattern was observed for other 
mortality outcomes, with the possible exception of lung 
cancer where the concentration-response curve for UFP size 
peaked around approximately 30 nm and then flattened off. 
However, the concentration-response curve for UFP number 
concentrations and lung cancer remained consistent with 
the observed distribution of UFP size across the number 
concentration range (i.e., a lower proportion of the particles 
sizes more strongly associated with mortality at elevated UFP 
number concentrations). Concentration-response curves for 
BC are shown in Appendix Figure A.58. For nonaccidental, 

cardiovascular, cardiometabolic, and ischemic heart disease 
mortality, a threshold-type shape was apparent, but HRs then 
decreased at higher concentrations. Concentration-response 
curves for outdoor UFP number concentrations and UFP 
size from LUR and CNN models separately and mortality 
outcomes are shown in Appendix Figure A.59. The shapes 
of the curves were generally similar to those of the combined 
models (Figure 10), however, the curve flattening at elevated 
UFP number concentrations was less pronounced for the 
CNN models than it was for the LUR models.

Sensitivity of Epidemiological Results to Backcasting, 
Mobility Weighting, and Exposure Model Type

Analyses examining the sensitivity of HRs from our 
main exposure models (i.e., combined LUR-CNN model) to 
backcasting and mobility weighting are shown in Tables 12 
and 13 for UFP number concentrations and BC, respec-
tively. In general, backcasting had little impact on observed 
HRs for UFP number concentrations or BC; however, for 
BC, backcasting did change the direction of association 
for nonaccidental, cardiovascular, and cardiometabolic 
(i.e., from slightly inverse to slightly positive) mortality 
outcomes. HRs based on mobility-weighted UFP exposures 
tended to be lower but generally remained positively asso-
ciated with all mortality outcomes. This pattern may have 
occurred because mobility weighting was not conducted 
at the individual level, and thus the mobility-weighted 
models may contribute exposure measurement error to 
the epidemiological analyses. Associations between BC 
and mortality remained mostly null (or very weak) when 
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Figure 10. Concentration-response curves for outdoor UFP number concentrations; UFP size; and nonaccidental, cardiovascular, 
respiratory, and lung cancer mortality along with frequency plots of joint exposures to UFP number concentration and UFP size. 
Curves were fit using penalized splines with generalized cross-validation to select the optimal smoothness parameters. UFP = ultrafine 
particles.
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Figure 11. Concentration-response curves for outdoor UFP number concentrations; UFP size; and cardiometabolic, cerebrovascular, 
and ischemic heart disease mortality along with frequency plots of joint exposures to UFP number concentration and UFP size. 
Curves were fit using penalized splines with generalized cross-validation to select the optimal smoothness parameters. UFP = ultrafine 
particles.

mobility-weighted exposures were used, although HRs for 
lung cancer and respiratory mortality strengthened slightly 
in the inverse direction.

Mortality HRs from the LUR and CNN models separately (as 
opposed to their combined use in our main exposure model) 
are shown in Tables 14 and 15 for UFP number concentrations 
and BC, respectively. In general, stronger associations were 
observed between UFP number concentrations and mortality 

for analyses based on the CNN model alone compared to the 
LUR model alone. In most cases, differences were small, with 
larger differences observed for nonaccidental mortality, respi-
ratory mortality, and lung cancer mortality. For BC, results 
were similar for both modeling approaches, with HRs close 
to the null (sometimes slightly above the null and sometimes 
slightly below the null). For respiratory and lung cancer mor-
tality, inverse associations with BC were stronger in analyses 
using the CNN model compared to using the LUR model.
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Table 12. Hazard Ratios per 10,000 particles/cm3 Increase in UFP Number Concentrations and Mortality from Combined 
LUR-CNN Model (Main Exposure Model) with and without Backcasting and with and without Mobility Weightinga

Cause of Mortality

Backcasted
HR (95% CI)

Mobility Weighted
HR (95% CI)

Yes
(main analysis) No Backcasted Not Backcasted

Nonaccidental 1.073
(1.061, 1.085)

1.078
(1.064, 1.094)

1.034
(1.019, 1.046)

1.053
(1.035, 1.072)

Cardiovascular 1.069
(1.047, 1.094)

1.072
(1.043, 1.100)

1.057
(1.029, 1.085)

1.069
(1.035, 1.106)

Cardiometabolic 1.075
(1.052, 1.098)

1.080
(1.054, 1.108)

1.066
(1.038, 1.091)

1.081
(1.047, 1.113)

Ischemic heart disease 1.094
(1.062, 1.126)

1.102
(1.066, 1.141)

1.076
(1.042, 1.113)

1.106
(1.060, 1.153)

Cerebrovascular 1.061
(1.007, 1.117)

1.045
(0.983, 1.110)

1.046
(0.986, 1.111)

1.035
(0.959, 1.118)

Respiratory 1.174
(1.130, 1.220)

1.201
(1.149, 1.256)

1.124
(1.074, 1.176)

1.184
(1.120, 1.253)

Lung cancer 1.057
(1.017, 1.098)

1.074
(1.027, 1.122)

1.021
(0.975, 1.070)

1.053
(0.998, 1.115)

CI = confidence interval; HR = hazard ratio.
aAll models included sociodemographic variables, PM2.5, Ox, UFP size, and BC.

Table 13. Hazard Ratios per 500 ng/m3 Increase in BC and Mortality from Combined LUR-CNN Model (Main Exposure 
Model) with and without Backcasting and with and without Mobility Weightinga

Cause of Mortality

Backcasted
HR (95% CI)

Mobility-Weighted
HR (95% CI)

Yes
(main analysis) No Backcasted Not Backcasted

Nonaccidental 1.009
(1.004, 1.015)

0.994
(0.985, 1.002)

1.000
(0.991, 1.009)

0.975
(0.965, 0.986)

Cardiovascular 1.015
(1.004, 1.027)

0.999
(0.984, 1.017)

1.007
(0.991, 1.024)

0.988
(0.968, 1.008)

Cardiometabolic 1.015
(1.004, 1.025)

0.999
(0.984, 1.015)

1.006
(0.991, 1.022)

0.986
(0.967, 1.006)

Ischemic heart 
disease

1.009
(0.995, 1.025)

0.993
(0.972, 1.015)

1.002
(0.981, 1.024)

0.980
(0.954, 1.007)

Cerebrovascular 1.025
(0.999, 1.052)

1.004
(0.967, 1.040)

1.032
(0.995, 1.070)

1.012
(0.967, 1.059)

Respiratory 0.979
(0.959, 0.999)

0.946
(0.918, 0.974)

0.968
(0.940, 0.997)

0.920
(0.886, 0.953)

Lung cancer 0.987
(0.967, 1.008)

0.981
(0.953, 1.009)

0.952
(0.925, 0.981)

0.945
(0.913, 0.979)

CI = confidence interval; HR = hazard ratio.
aAll models included sociodemographic variables, PM2.5, Ox, UFP number concentrations, and UFP size.
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Table 14. Hazard Ratios for 10,000 particles/cm3 Increase in UFP Number Concentrations and Mortality from the LUR 
and CNN Models Separately with and without Backcasting and with and Without Mobility Weightinga

Cause of Mortality Backcasted
HR (95% CI)

Mobility-Weighted
HR (95% CI)

Yes No Backcasted Not Backcasted

LUR Model

Nonaccidental 1.028
(1.021, 1.037)

1.025
(1.017, 1.035)

1.012
(1.003, 1.021)

1.017
(1.006, 1.028)

Cardiovascular 1.037
(1.023, 1.053)

1.034
(1.017, 1.052)

1.033
(1.017, 1.050)

1.036
(1.015, 1.059)

Cardiometabolic 1.040
(1.027, 1.054)

1.039
(1.023, 1.056)

1.040
(1.024, 1.057)

1.043
(1.024, 1.065)

Ischemic heart disease 1.051
(1.033, 1.07)

1.052
(1.030, 1.074)

1.047
(1.026, 1.069)

1.059
(1.032, 1.086)

Cerebrovascular 1.041
(1.007, 1.075)

1.023
(0.985, 1.064)

1.033
(0.993, 1.071)

1.021
(0.972, 1.070)

Respiratory 1.068
(1.043, 1.094)

1.073
(1.042, 1.104)

1.052
(1.022, 1.082)

1.068
(1.032, 1.107)

Lung cancer 1.013
(0.987, 1.037)

1.015
(0.987, 1.044)

0.993
(0.964, 1.022)

1.004
(0.968, 1.042)

CNN Model

Nonaccidental – 1.114
(1.097, 1.132)

– 1.101
(1.075, 1.125)

Cardiovascular – 1.050
(1.019, 1.084)

– 1.026
(0.978, 1.075)

Cardiometabolic – 1.060
(1.029, 1.092)

– 1.026
(0.984, 1.071)

Ischemic heart disease – 1.053
(1.009, 1.097)

– 1.010
(0.950, 1.071)

Cerebrovascular – 1.021
(0.951, 1.097)

– 0.975
(0.879, 1.081)

Respiratory – 1.265
(1.199, 1.337)

– 1.283
(1.185, 1.387)

Lung cancer – 1.160
(1.102, 1.223)

– 1.206
(1.118, 1.302)

CI = confidence interval; CNN = convolutional neural network; HR = hazard ratio; LUR = land use regression.
aAll models included sociodemographic variables, PM2.5, Ox, UFP size, and BC.
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Table 15. Hazard Ratios for 500 ng/m3 Increase in BC and Mortality from the LUR and CNN Models Separately with and 
without Backcasting and with and without Mobility Weightinga

Cause of Mortality Backcasted
HR (95% CI)

Mobility-Weighted
HR (95% CI)

Yes No Backcasted Not Backcasted

LUR Model

Nonaccidental 1.016
(1.012, 1.022)

1.006
(0.999, 1.013)

1.007
(1.000, 1.014)

0.989
(0.981, 0.999)

Cardiovascular 1.017
(1.008, 1.027)

1.005
(0.991, 1.018)

1.009
(0.996, 1.023)

0.995
(0.978, 1.012)

Cardiometabolic 1.018
(1.009, 1.026)

1.006
(0.993, 1.019)

1.008
(0.996, 1.021)

0.993
(0.977, 1.009)

Ischemic heart disease 1.011
(0.999, 1.023)

0.996
(0.978, 1.014)

1.003
(0.985, 1.021)

0.986
(0.964, 1.008)

Cerebrovascular 1.028
(1.007, 1.049)

1.016
(0.986, 1.049)

1.029
(0.999, 1.059)

1.015
(0.977, 1.054)

Respiratory 1.001
(0.985, 1.018)

0.978
(0.954, 1.002)

0.989
(0.966, 1.012)

0.951
(0.922, 0.979)

Lung cancer 0.999
(0.983, 1.016)

0.996
(0.974, 1.020)

0.976
(0.953, 0.998)

0.977
(0.950, 1.005)

CNN Model

Nonaccidental – 0.983
(0.973, 0.993)

– 0.975
(0.960, 0.989)

Cardiovascular – 1.001
(0.983, 1.020)

– 1.021
(0.994, 1.050)

Cardiometabolic – 1.000
(0.982, 1.017)

– 1.024
(0.997, 1.051)

Ischemic heart disease – 1.014
(0.990, 1.038)

– 1.043
(1.006, 1.082)

Cerebrovascular – 0.976
(0.937, 1.017)

– 1.030
(0.968, 1.096)

Respiratory – 0.937
(0.909, 0.969)

– 0.926
(0.883, 0.973)

Lung cancer – 0.986
(0.957, 1.018)

– 0.918
(0.876, 0.962)

CI = confidence interval; CNN = convolutional neural network; HR = hazard ratio; LUR = land use regression.
aAll models included sociodemographic variables, PM2.5, Ox, UFP number concentrations, and UFP size.
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DISCUSSION AND CONCLUSIONS

EXPOSURE MODEL DEVELOPMENT AND EVALUATION

In this study, we developed new high-resolution exposure 
models to predict within-city spatial variations in outdoor 
UFP number concentrations, mean UFP size, and BC mass 
concentrations for Canada’s two largest cities. This analysis 
improves on our earlier models12,13 by increasing the spatial 
coverage of the monitoring campaign, increasing the total 
monitoring time, extending the monitoring period over an 
entire year, randomly sampling all days of the week and most 
times of day, and incorporating information from digital aerial 
images into model predictions using CNNs. The increased 
spatial and temporal coverage of this monitoring campaign 
compared to our previous effort likely resulted in a more 
representative sample of the within-city spatial variations of 
annual average outdoor air pollution. Model R2 values cannot 
be directly compared across studies, but the R2 values of our 
LUR, CNN, and combined models fell within the range of 
published R2 values from other studies that developed LUR 
models, machine learning models, or CNN models trained on 
images of the urban environment.12,13,22,43,53–55 The magnitude 
of the bias observed in our models was similar to the bias 
reported by other studies as well.12,43,53,55 A further improve-
ment over our earlier models was the development of models 
for mean UFP size, which generally predicted smaller mean 
UFP sizes in areas of elevated UFP number concentrations, 
which is consistent with other research56 and our understand-
ing of particle growth (i.e. fresh emissions consisting of high 
concentrations of very small particles).57,58 The development 
of mean UFP size models is important because particle size 
may play a role in UFP toxicity59–61 and has the potential to 
confound associations between outdoor UFP number con-
centrations and adverse health outcomes, as discussed previ-
ously. Collectively, this investigation produced a number of 
interesting results.

First, we observed high within-city spatial variations in 
outdoor UFP number concentrations, mean UFP size, and BC 
concentrations during mobile monitoring, all of which were 
monitored and modeled on the same spatial and temporal 
scales following the same methods. This finding is consistent 
with those from other studies that reported outdoor UFP 
and BC concentrations as having much greater within-city 
spatial variations than outdoor PM2.5 concentrations.22,62–64 
The high-resolution models we developed explained more 
than half of the observed spatial variation in outdoor UFP 
and BC concentrations in the test sets. Our predicted UFP 
number concentrations were less strongly correlated with 
other air pollutants (PM2.5 r = 0.10, BC r = 0.38) than other 
models recently developed for Southern California (PM2.5  
r = 0.28, BC r = 0.64).22 City-specific models performed 
better than multicity models trained on pooled data, which 
is consistent with the documented difficulty of transferring 
models between study areas.65–67 The CNN models performed 
somewhat worse than the LUR models but took advantage of 

an alternative data stream (i.e., images instead of GIS data), 
and it is possible that the CNN models learned complex asso-
ciations that were not present in GIS data alone. Combined 
models performed better than any LUR or CNN models on 
their own, though with only a modest increase in R2 compared 
to the LUR models. This is consistent with the results from 
a similar study43 and suggests that CNNs trained on images 
can be useful for predicting within-city spatial variations in 
outdoor air pollution, especially when combined with LUR 
models. Nonetheless, CNNs can learn unintended associa-
tions between image features and underlying structures in the 
data, which can affect generalizability.68–70 For example, our 
CNNs appeared to be somewhat sensitive to the time of year 
images were captured, which likely introduced measurement 
error into our estimates. Nevertheless, our results suggest that 
CNN models are useful in capturing spatial information on 
environmental exposures, and this may be particularly useful 
in places lacking large, curated databases of land use and 
traffic information, as recently demonstrated in Bucaramanga, 
Colombia.43

Second, for each pollutant, the LUR and CNN models 
generated similar prediction surfaces, yet there were several 
interesting differences. For instance, the LUR model predic-
tion surfaces were generally smoother than those from CNN 
models. This difference was due in part to the inclusion 
of latitude and longitude in the LUR models. Latitude and 
longitude vary incrementally throughout the study area and 
smoothed the LUR predictions, whereas each CNN-generated 
prediction was based solely on digital images that covered up 
to 280 m × 280 m of the earth’s surface (i.e., the CNN predic-
tion for a given point was naïve to any information beyond 
the edge of the image centered on that point). UFP and BC 
concentrations can vary greatly over very short distances,4,62,63 
and it is possible LURs may have over-smoothed the spatial 
variations in certain areas. In other areas, however, the CNN 
may have resulted in under-smoothing, as it is naïve to infor-
mation beyond the limits of the images. Combined model 
prediction surfaces appeared to integrate the smoothness of 
the LUR surfaces with the sharp gradients of the CNN sur-
faces, which may be a useful compromise between the two 
approaches. Furthermore, mapping the difference between 
LUR and CNN model predictions highlighted interesting 
contrasts. For example, on major highways, the Montreal 
LUR model consistently predicted higher UFP number 
concentrations than the Montreal CNN model, whereas in 
Toronto, it was the opposite. In general, combining LUR and 
CNN predictions resulted in only a modest increase in overall 
model performance compared to the LUR models alone, but 
the combined models may help generate more robust predic-
tions throughout the modeling areas by taking advantage of 
information from both land use data and digital images. In 
our previous study, conducted in Colombia, spatial variations 
in model errors were lower for CNN models than for LUR 
models.43

A strength of our exposure modeling study was the large 
scope of the monitoring campaign, and mobile monitoring 
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was an efficient approach to maximize spatial coverage, 
though a limitation was relatively low monitoring time per 
road segment compared to stationary monitoring.55,71 On aver-
age, road segments were visited on 10 different days for a total 
of roughly 60 seconds of monitoring. Although researchers 
have successfully developed models based on similar levels 
of monitoring,12,13,71,72 longer monitoring times would likely 
provide more stable estimates of annual average ambient UFP 
and BC levels. In addition, mobile monitoring was conducted 
using internal combustion engine vehicles driving on roads 
and major highways, which likely resulted in our measured 
values of air pollution being higher than the air pollution val-
ues immediately outside residences. However, it is important 
to note that many areas were detected with low air pollution 
levels, and thus our use of gasoline vehicles did not prevent 
us from capturing a wide range of pollutant concentrations 
across each city. Nevertheless, future monitoring campaigns 
could follow the approach recently used by Blanco and col-
leagues to address this limitation (i.e., building in stopping 
locations along each route).73

Another strength of this study was the incorporation of 
information from digital images to improve predictions. 
However, the application of CNNs can be challenging. First, 
CNNs require a large amount of training data and may not be 
applicable for smaller monitoring campaigns. Second, CNNs 
do not have the easily interpretable coefficients of linear 
regression models; however, we explored several approaches 
to verify that CNN models responded in a logical manner, 
and results were generally consistent with our current under-
standing of UFP sources (e.g., adding a road to an image of 
green space generally increased model predictions). Third, 
quality control of digital images is an extremely important 
and potentially resource-intensive step74,75 when training 
CNN models. For example, past applications of CNNs have 
erroneously learned structural flaws in the data when train-
ing models on images from multiple databases.76,77 Using R 
to download Google Maps satellite images was an efficient 
approach to compile a high-quality database of digital images, 
but we could not control the exact timing of image capture. 
This led to some images being from different seasons during 
the year-long campaign and likely had a small impact on CNN 
model predictions. Future studies should consider allocating 
resources to establishing high-quality databases of digital 
images for CNN model training and possibly developing 
methods to take advantage of seasonal differences in digital 
images to generate robust estimates of spatial variations in air 
pollution.

EPIDEMIOLOGICAL ANALYSIS

In the cohort study portion of this project, we followed a 
large population of adults in Montreal and Toronto and found 
consistent positive associations between long-term exposure 
to outdoor UFP number concentrations and both nonacci-
dental and cause-specific mortality. These associations were 
independent of other outdoor air pollutants, including PM2.5 

and oxidant gases. The associations persisted when using 
different exposure models and, importantly, also adjusted for 
UFP size (i.e., mean UFP diameter), which has not been done 
in previous studies and could result in an underestimation of 
health risks when excluded from the analyses. Results for BC 
were largely null, although small positive associations were 
observed for some mortality outcomes.

As noted earlier, few cohort studies have examined the 
relationship between long-term exposure to outdoor UFP 
number concentrations and mortality. A study in California 
reported a positive association between outdoor UFPs and 
ischemic heart disease mortality,23 but exposures were esti-
mated at a spatial resolution of approximately 4 km, which 
is too coarse to capture fine-scale spatial variations that may 
affect health. Similarly, Pond and colleagues16 reported posi-
tive associations between UFPs and nonaccidental and cause-
specific mortality, but results were sensitive to the inclusion 
of PM2.5 in models. In addition, this study aggregated UFP 
exposures to the census tract level, which likely contributed 
substantially to exposure measurement error for UFPs (more 
so than for PM2.5), making it difficult to directly compare the 
results of this study to those using high-resolution exposure 
information. More recently, a cohort study in the Netherlands 
reported positive associations between outdoor UFP number 
concentrations and mortality using high-resolution estimates 
of spatial variations in long-term average outdoor UFP con-
centrations.15 Although this study did not adjust for UFP 
size, the observed associations (nonaccidental HR = 1.045, 
95% CI: 1.037, 1.056; respiratory HR = 1.083, 95% CI: 1.049, 
1.123; rescaled to match 10,000 particles/cm3 increment used 
in this study) were similar in magnitude to those observed 
in the present study (when expressed on the same scale) 
when we excluded UFP size from our models (nonaccidental  
HR = 1.034, 95% CI: 1.024, 1.043; respiratory HR = 1.092, 
95% CI: 1.061, 1.123). Other studies of long-term exposures 
to UFPs and mortality were not identified, but studies in 
Denmark have compared the health risks of total outdoor UFP 
number concentrations as well as traffic-related UFP number 
concentrations.78,79

Specifically, in these studies, traffic-related UFPs were 
more strongly associated with type 2 diabetes incidence80 
with weaker associations observed for incident myocardial 
infarctions.81 More generally, these previous observations and 
our results with respect to confounding by UFP size highlight 
the fact that we should not treat all UFP number concentra-
tions as though they reflect a single type of exposure. This 
relates more broadly to the issue of confounding of version 
of treatment-outcome associations when studying exposures 
with multiple versions of treatment, which is likely an 
underappreciated source of bias in air pollution epidemi-
ology for pollutants that have historically been treated as a 
single entity (e.g., UFP number concentrations or PM2.5 mass 
concentrations) but in reality represent a complex mixture 
of component parts with varying levels of toxicity.24 In the 
context of our results, it is clear that for outdoor UFP number 
concentrations, we need to consider UFP size because the size 
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distribution of UFPs varies across the range of outdoor UFP 
number concentrations and UFP size is independently asso-
ciated with mortality. Importantly, our results suggest that 
failure to consider UFP size in the analysis may result in an 
underestimation of the health effects of outdoor UFP number 
concentrations. In our analysis HRs were approximately four 
times smaller for cardiovascular mortality and disappeared 
altogether for cerebrovascular mortality when UFP size was 
excluded from the models. As such, UFP size should be con-
sidered in epidemiological analyses to avoid the potential bias 
in health risk estimates for UFP number concentrations. This 
is consistent with a recent review by Kittelson and colleagues 
that recommended using UFP number, mass, and surface area 
(i.e., size) to properly characterize UFP exposures.57 In the 
same manner that earlier toxicological research investigated 
the varying health effects of different number concentrations 
by holding mass concentration constant,82,83 future investiga-
tions into the health effects of UFP number concentrations 
should control for potential variations in UFP size.

In general, our results for UFPs were robust to sensitivity 
analyses both with and without backcasting and with and with-
out mobility weighting, although mobility-weighted results 
were attenuated. This is likely attributable to mobility weight-
ing being conducted at the neighborhood level as opposed to 
the individual level, and thus the mobility-weighting process 
likely contributed to exposure measurement error at the 
individual level. In addition, the results of epidemiological 
analyses for UFPs conducted separately for the LUR and CNN 
models generally suggested stronger associations for CNN 
model estimates. The reasons for this are unclear but may be 
related to the issue of spatial smoothing whereby the CNN 
model exposures are more local in nature; in contrast, LUR 
models exhibit more spatial smoothing owing to the nature of 
the variables included in the model. If local-level UFP levels 
are most relevant to health, this could explain the stronger 
associations observed for the CNN models. Different exposure 
models can introduce varying degrees of spatial and temporal 
errors into exposure estimates that can lead to unpredictable 
bias in estimated HRs. Training a single CNN model requires 
intensive computing resources, which makes a formal 
uncertainty analysis impractical. Nonetheless, although we 
observed some variation in estimated associations when using 
different exposure models, the direction and magnitudes of 
associations were relatively consistent. Moreover, measure-
ment error for UFP size could result in residual confounding 
by UFP size. As this error is expected to be nondifferential, it 
suggests that true HRs for UFP number concentrations could 
be larger than those reported earlier (because confounding by 
UFP size resulted in an underestimation of the health effects 
of UFP number concentrations).

Another intriguing finding from our analysis is that larger 
particles in the UFP size range were more strongly associated 
with mortality in the main epidemiological analysis (i.e., 
while controlling for exposure to UFP number concen-
tration, other pollutants, and relevant confounders). UFP 
size ranged from approximately 18 to 50 nm in our study, 

and the probability of lung deposition is similar across this 
range.84,85 Freshly emitted UFPs can rapidly grow in size as 
gaseous vapors condense into liquids and as particles aggre-
gate together (i.e., nucleation and accumulation modes).2,4,64 
During this process, UFPs interact with the outdoor environ-
ment, and this atmospheric aging can enhance the toxicity of 
the particles.86 Alternatively, the observed pattern of larger 
UFP particles being more harmful may be explained by differ-
ences in particle composition across the UFP size distribution 
or the propensity for particles of various sizes to reach the 
systemic circulation once deposited in the lung.2,71, 87 Future 
studies should continue to explore the independent health 
effects of UFP size as well as composition to further elucidate 
this relationship.

When not adjusting for exposure to other air pollutants, we 
observed positive associations between outdoor BC concen-
trations and nonaccidental, cardiovascular, cardiometabolic, 
ischemic heart disease, cerebrovascular and respiratory 
mortality. These associations weakened or disappeared when 
UFPs, PM2.5, and Ox were included in the model, with only 
nonaccidental, cardiovascular, and cardiometabolic mortality 
continuing to be associated with outdoor BC concentrations. 
Previous studies have observed positive associations between 
outdoor BC concentrations and mortality, 88–90 although most 
of these studies did not examine high-resolution within-city 
spatial variations in outdoor BC. For example, Gan and col-
leagues91 reported a positive association between outdoor BC 
concentrations and coronary heart disease mortality in Van-
couver (HR = 1.037, 95% CI: 1.018, 1.055; rescaled to match 
500 ng/m3 increment used in this study). This association 
is slightly larger than the positive association we observed 
between BC and cardiovascular mortality in Montreal and 
Toronto (HR = 1.015, 95% CI: 1.004, 1.025). Similarly, a weak 
association between BC and nonaccidental mortality was 
reported in the Dutch Environmental Longitudinal Study (HR 
= 1.021, 95% CI: 0.996, 1.047; rescaled to 500 ng/m3)92 and 
was similar in magnitude to what we observed in Montreal 
and Toronto (HR = 1.009, 95% CI: 1.004, 1.015). A third 
study, in Oakland, California, used mobile monitoring and 
high-resolution exposure models to examine the association 
between long-term exposure to BC and cardiovascular mor-
tality but did not observe clear evidence of a positive asso-
ciation.93 Conversely, two studies in Denmark94,95 reported 
positive associations between high-resolution estimates of 
outdoor BC concentrations and all-cause and cardiovascular 
mortality. However, similar to our results, estimates in one 
of these studies95 were sensitive to adjustment for NO2, 
and BC was not associated with mortality when NO2 was 
included in the model. Our single-pollutant model results 
were similar to an analysis of several European cohorts that 
observed associations between long-term BC exposure and 
nonaccidental, cardiovascular, cardiometabolic, ischemic 
heart disease, cerebrovascular, and respiratory mortality in 
single-pollutant models.89 As with our results, these associ-
ations were attenuated when co-pollutants were included 
in the models. Lastly, an analysis of a French cohort found 
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that associations between BC exposure and mortality were 
stronger when using longer exposure windows (e.g., 20-year 
average instead of 3-year average); however, the analysis did 
not consider exposure to NO2 or O3.

90

More generally, heterogeneity in epidemiological results 
for outdoor BC concentrations could be attributed to numerous 
factors, including geographic differences in the composition  
of the BC mixture, which may vary depending on sources 
(e.g., predominantly gasoline vs. diesel vehicle emissions), 
differences in the spatial scale of exposure assessment (e.g., 
high spatial resolution vs. regional estimates), or residual 
confounding. Future cohort studies examining the health 
effects of traffic-related air pollution should consider measur-
ing outdoor BC concentrations, UFP number concentrations, 
and UFP size (in addition to PM2.5 and Ox) because, to our 
knowledge, this study is the only epidemiological investi-
gation to date to consider all three of these metrics in the 
analysis.

Our epidemiological analyses had several notable strengths, 
including a large population-based cohort, adjustment for 
mean UFP size, high-resolution exposure models based on 
year-long monitoring campaigns, updating exposures for 
residential mobility both within and between cities, exten-
sive sensitivity analyses to various modeling approaches, and 
detailed evaluation of concentration-response relationships. It 
is important, however, to note several limitations. First, while 
we backcasted exposure estimates for use in epidemiological 
analyses, it is not possible to evaluate the validity of our esti-
mates back in time owing to the absence of historical monitor-
ing data suitable for estimating annual average outdoor UFP 
and BC concentrations. Therefore, as in all epidemiological 
studies, our results likely were subject to exposure measure-
ment error, including contributions from both Berkson-type 
(e.g., cohort members in the same six-digit postal code 
received the same exposure estimate) and classical-type mea-
surement error (e.g., measured values aggregated to each road 
segment are imperfect estimates of true long-term outdoor 
concentrations). In addition, the exposure models used in this 
study were developed using on-road measurements, and the 
absolute values of our estimated exposures may be elevated 
compared to true long-term outdoor concentrations. However, 
it is important to note that our monitoring campaign captured 
a wide range of outdoor UFP and BC concentrations across 
each city, and thus our monitoring approach did not prevent 
us from identifying low-exposure areas. Importantly, UFPs 
and BC were measured concurrently, were modeled using 
the same methods on the same spatial and temporal scales, 
and were weakly correlated. Although we cannot rule out 
that one may have been measured more precisely than the 
other, we do not believe that the differences (in the amount of 
measurement error between these two pollutants) are a likely 
explanation for our results or differences in the strengths of 
mortality associations for UFPs and BC.

Another limitation was the use of mean UFP size as 
measured by the Testo DiSCmini and Naneos Partector 2 

instruments as opposed to more sophisticated methods that 
provide measurements across the entire particle size distri-
bution. However, the method employed by these instruments 
has been evaluated against gold standard scanning mobility 
particle sizer measurements for UFP size and performed 
very well in these comparisons. 32 In general, while mean 
UFP size as measured by these handheld monitors may have 
limitations, our results suggest that it is important to consider 
this parameter to reduce potential confounding bias in health 
risk estimates for UFP number concentrations. As noted 
previously, improved measures of UFP size could reduce 
residual confounding and further strengthen associations for 
UFP number concentrations.

Finally, although our cohort lacked information on 
individual-level behaviors and characteristics such as smok-
ing or body mass index, we do not view this as a limitation, 
as these personal-level factors are unlikely to confound asso-
ciations for outdoor concentrations because they do not affect 
annual average outdoor pollution levels. The directed acyclic 
graphs in the current study illustrate that these personal-level 
factors are not confounders of associations for outdoor con-
centrations. Likewise, other studies of outdoor air pollution 
have found that adjusting for such risk factors did not affect 
risk estimates.20,48,96 Thus, we think it is unlikely that our 
results were confounded by personal-level factors, such as 
smoking or body mass index. The issue of confounding at the 
personal versus concentration level is addressed in detail by 
Weisskopf and Webster97 along with an examination of the 
trade-offs of personal versus proxy exposure measures in 
environmental epidemiology.

SUMMARY AND IMPLICATIONS

In summary, we observed consistent evidence of positive 
associations between outdoor UFP number concentrations 
and nonaccidental and cause-specific mortality in Canada’s 
two largest cities. Risks were greatest for respiratory and 
ischemic heart disease mortality and were robust to various 
modeling approaches, backcasting, and mobility weighting. 
Importantly, our analysis suggests that UFP size should be 
considered in future epidemiological analyses to obtain 
unbiased estimates of UFP number concentrations. Spe-
cifically, excluding information on UFP size can result in 
an underestimation of health risks or, in some cases, may 
result in missing important health risks entirely, which 
was the case for cerebrovascular mortality in our analysis. 
This relates more broadly to the topic of confounding of the 
version of treatment-outcome relationships when examining 
exposures with multiple versions of treatment and deserves 
more attention in air pollution epidemiology in general 
(particularly for undifferentiated mixtures like particulate 
air pollutants).  With respect to exposure modeling using 
mobile monitoring data, our results highlight that the LUR 
and CNN approaches generally capture the same broad 
spatial patterns across cities but that local-level differences 
do occur. Moreover, our results indicate that these modeling 
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approaches can give different estimates of the magnitude of 
health effects (although both indicated adverse health effects 
for UFPs). Although the specific design of mobile monitoring 
campaigns will vary depending on the research questions 
being addressed, there are likely advantages to combining 
the LUR and CNN approaches to estimating spatial varia-
tions in outdoor air pollution concentrations (and associated 
health consequences) to maximize the amount of spatial 
information available in the model. This is particularly true 
for locations that lack curated databases of land use and traf-
fic data because aerial images can be downloaded at a low 
cost and leveraged to make up for what would normally be 
captured through geographic information systems. Overall, 
our results demonstrate that UFPs vary greatly across urban 
areas and that outdoor UFPs may have an important impact 
on population health independent of other outdoor air 
pollutants, including PM2.5 mass concentrations and oxidant 
gases. As outdoor UFPs are not currently regulated, there 
is likely great potential for future regulatory interventions 
to improve population health by targeting these common 
outdoor air pollutants.
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Carbon and Effects on Mortality in Montreal and Toronto, Canada, S. Weichenthal et al.

INTRODUCTION

Outdoor air pollution is a major global public health risk 
factor. There is now broad expert consensus that exposure to 
ambient air pollution causes an array of adverse health effects 
based on evidence from a large body of scientific literature 
that has grown exponentially since the mid-1990s.1–5

Assessment of long-term exposure to ambient air pollution 
for epidemiological studies remains challenging. Early cohort 
studies characterized exposure to individual participants 
by assigning the average concentration measured at one or a 
few central sites within a city to each participant from this 
city.6,7 Fixed-site networks — even those in North America 
and Western Europe — still have relatively limited spatial 
coverage in many areas, particularly in suburban and rural 
locations, and insufficient density to capture small-scale 
(within-city) variations of air pollution.

Recent developments in measurement technologies and 
approaches to modeling long-term exposure to air pollu-
tion have increasingly been used to provide air pollution 
estimates at fine spatial scales for epidemiological studies 
of large populations. Advances include novel air pollution 
sensors, mobile monitoring, satellite data, hybrid models, 
and machine learning approaches.8 There remain important 
limitations and challenges, however, when predicting long-
term air pollution exposure, particularly for pollutants that 
vary highly in space and time.

In 2019, HEI issued Request for Applications (RFA*) 19-1, 
Applying Novel Approaches to Improve Long-Term Exposure 

Assessment of Outdoor Air Pollution for Health Studies (see 
Preface). The goal of the RFA was to develop and apply scal-
able novel approaches to improve assessments of long-term 
exposures to outdoor air pollutants that vary highly in space 
and time — such as ultrafine particles (UFPs), nitrogen diox-
ide (NO2), and ozone (O3). Studies were intended to evaluate 
exposure measurement error quantitatively and to determine 
how exposure assessment approaches might ultimately affect 
the health effects estimates derived.

Dr. Weichenthal and colleagues proposed to estimate asso-
ciations between long-term exposures to outdoor UFPs, black 
carbon (BC), and other pollutants and mortality in Toronto 
and Montreal, Canada, using several exposure modeling 
approaches. The HEI Research Committee recommended the 
study for funding because it would compare different expo-
sure modeling approaches, including state-of-the-art machine 
learning models that use aerial image data. They also appreci-
ated the focus on UFPs, the mobile monitoring campaign, and 
the leveraging of a large population-based cohort.

This Commentary provides the HEI Improved Exposure 
Assessment Studies Review Panel’s evaluation of the study. 
It is intended to aid the sponsors of HEI and the public by 
highlighting the study’s strengths and limitations and by 
placing the results presented in the Investigators’ Report into 
a broader scientific and regulatory context.

SCIENTIFIC AND REGULATORY BACKGROUND

Particulate matter (PM) is a mixture of solid particles and 
liquid droplets in the ambient air. It encompasses multiple 
size fractions, such as PM10 (PM with an aerodynamic diame-
ter less than 10 μm), PM2.5 (PM with an aerodynamic diameter 
less than 2.5 μm), and UFPs (PM with an aerodynamic diam-
eter less than 100 nm), and comprises various components, 
such as metals and BC.

UFPs in ambient air make up the smallest size fraction 
in what is actually a continuum of particles with diameters 
ranging from a few nanometers to several micrometers 
(illustrated in Commentary Figure  1 for a typical roadway 
aerosol). UFPs contribute little to the mass of particles but 
are the dominant contributors to particle number. Hence, 
total particle number concentration is commonly used as a 
proxy for UFPs. Commonly used instrumental methods for 
particle number concentration measurement do not provide 
information on particle size distribution or the fraction of the 
particles in the UFP-specific size range (<100 nm). In addi-
tion, both the lower and upper detection limits of different 

* A list of abbreviations and other terms appears at the end of this 
volume.

Dr. Scott Weichenthal’s 3-year study, “Comparing the Estimated 
Health Impacts of Long-Term Exposure to Traffic-Related Air Pollu-
tion Using Fixed-Site, Mobile, and Deep Learning Models,” began in 
May 2020. Total expenditures were $825,479. The draft Investigators’ 
Report from Weichenthal and colleagues was received for review 
in August 2023. A revised report, received in November 2023, was 
accepted for publication in December 2023. During the review pro-
cess, the HEI Improved Exposure Assessment Review Panel and the 
investigators had the opportunity to exchange comments and clarify 
issues in both the Investigators’ Report and the Panel’s Commentary.

This document has not been reviewed by public or private party 
institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views of these parties, and no 
endorsements by them should be inferred.
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instruments vary; the lower limit typically ranges from 2 nm 
to 20 nm. The choice of the lower cut-off of measurement 
is usually critical because most UFPs are less than 20 nm, 
and even small differences in the lower cut point in the range 
below 20 nm can lead to substantial differences in particle 
number concentration.9

BC is a subset of PM2.5 and a measure of airborne soot-like 
carbon that can be determined with several optical methods. 
It is closely related to the mass concentration of elemental 
carbon (i.e., carbon in various crystalline forms) that can 
be analyzed using chemical methods. BC is a potent agent 
that contributes to global warming through the absorption 
of light and release of heat. International or national stan-
dard methods to characterize UFPs and BC have not been 
established.9,10

In urban areas, road traffic and other forms of transporta-
tion, including aviation and shipping, are usually the main 
sources of UFPs.11,12 UFPs are emitted directly by all combus-
tion sources as primary particles. UFPs are also formed in the 
air as secondary particles through complex physiochemical 
new particle formation processes that involve inorganic and 
organic gaseous precursors.12 BC is also typically formed 
through the incomplete combustion of fossil fuels, biofuel, 
and biomass and is emitted from both anthropogenic and 
natural sources.5

The current PM2.5 annual average air quality standard is 9 
μg/m3 in both Canada and the United States.13,14 The US Envi-
ronmental Protection Agency recently lowered the National 
Ambient Air Quality Standards (NAAQS) for PM2.5 from 12 
µg/m3 to 9 µg/m3. This is the first change in the PM2.5 NAAQS 
since 2012.14 The World Health Organization (WHO) released 
new Air Quality Guidelines in 2021 and recommended that 
annual mean concentrations of PM2.5 should not exceed  

5 μg/m3.5 There are no specific ambient air quality stan-
dards or guidelines for UFPs and BC, and regulatory 
agencies do not commonly measure them. Although 
no air quality guidelines were developed for UFPs and 
BC, WHO provided “good practice statements” for 
these pollutants geared toward additional monitoring, 
mitigation, and epidemiological research.5

UFPs can be inhaled deeply into the lungs, enter the 
alveoli, and penetrate biological membranes, enabling 
them to pass into the systemic circulation, overcome 
the placental barrier, and finally diffuse into all organ 
systems, including the brain and nervous system.9 
Although studies investigating the health effects of 
short-term exposure are increasingly available, there 
are few long-term air pollution and health studies 
on UFPs, due partly to the difficulties of long-term 
exposure assessment.5,9,15,16 Reliance on measurements 
at central-site monitors to represent broad population 
exposure — a central feature in many earlier epidemi-
ological studies of long-term exposures to PM2.5 and 
other pollutants — is likely to lead to errors in expo-

sure estimates of UFPs or other pollutants that vary highly in 
space and time.

In recent years, researchers have increasingly used mobile 
monitoring by affixing monitoring devices to vehicles and 
making measurements while systematically and repeatedly 
traveling a road network. Mobile monitoring strategies can 
involve on-road mobile measurements made while driving 
predefined strategic routes or repeated short-term measure-
ments made while in a parked vehicle and collected at many 
locations. Data collected through mobile monitoring have 
been used to develop land use regression (LUR) models and 
other air pollution maps.17–19 Air pollution maps estimated 
from such monitoring are being increasingly applied in epi-
demiological studies.20,21 As noted earlier, however, important 
limitations and challenges remain when predicting long-term 
air pollution exposure for pollutants that vary highly in space 
and time.

SUMMARY OF APPROACH AND METHODS

The study by Dr. Weichenthal and colleagues assessed 
associations of long-term exposures to outdoor UFPs and BC 
with mortality in Toronto and Montreal, Canada, using sev-
eral exposure modeling approaches. They conducted mobile 
monitoring campaigns in both cities and used those data to 
develop various high-resolution exposure models of within-
city spatial variability in annual outdoor UFPs and BC. They 
then applied those models to a large representative sample 
of Canadian adults (1.5 million) from the Canadian Census 
Health and Environment Cohort (CanCHEC). They used both 
single-pollutant and multipollutant Cox proportional hazard 
models to assess the association between air pollution expo-
sure and nonaccidental and cause-specific mortality adjusted 
for important confounders, as described later in more detail.

Commentary Figure 1. Normalized particle size distributions of typical 
roadway aerosol.9
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Land Use Regression and Machine Learning  
Exposure Models

The mobile monitoring data were randomly split into sub-
sets to train (70%), validate (15%), and test (15%) the high-
resolution exposure models of UFP number concentrations, 
UFP size, and BC.

The investigators developed three new exposure models 
for each city separately: (a) LUR models based on the mobile 
monitoring data combined with detailed land use and traffic 
information; (b) machine learning, specifically convolutional 
neural network (CNN) models using mobile monitoring data 
and aerial images from Google Maps; and (c) a combination of 
these two models.

Estimates from each model were developed using the 
training dataset and compared to observed values in the 
validation and test datasets. Moreover, the new UFP number 
concentration estimates were compared to earlier LUR mod-
els that were developed using mobile monitor data collected 
in the two cities in 2010–2012.22,23

Accounting for weather-related temporal variations in air 
pollution during the monitoring campaign was necessary 
despite the random order of the monitoring campaign. Hence, 
meteorological data were forced into the LUR models as pre-
dictors and adjusted for in the CNN models separately after 
training the model. In total, 32 different predictor variables 
were available for LUR model development, many of which 
were examined at three different buffer sizes (100 m, 200 m,  
and 300 m). Variables that were statistically significantly 
associated with the air pollutant without being driven by 
outliers became candidate variables. Pairs of correlated 
candidate variables were identified (Spearman’s r > 0.7), and 
the variables with the lowest mean square error were selected 
in the final LUR to avoid overfitting. Latitude and longitude 
were added to the LUR to capture spatial dependencies not 
covered by other variables. LUR models were developed 
using generalized additive models that allowed for nonlinear 
relationships.

For the CNN models, two aerial color images from Google 
Maps were used to capture both local (140 m × 140 m) and 
contextual (280 m × 280 m) information per road segment. In 
short, the CNN algorithm performs mathematical transforma-
tions on the numeric values on the pixel data of the images. 
Through an iterative process, the CNN learns key features in 
the digital images that are predictive of the air pollution lev-
els measured at the road segment. The detailed specifications 
of the CNN models can be found in the Investigators' Report.

Backcasting and Accounting for Mobility

The investigators examined the 2020–2021 exposure mod-
els with and without backcasting based on historical trends 
in traffic information and nitrogen oxides (NOx) emissions 
back to 2006. Various modeling techniques were developed 
to interpolate traffic counts and NOx emissions spatially and 

During the course of the work, several unforeseen setbacks 
occurred, partly due to the COVID-19 pandemic. This led to 
incomplete monitoring for NO2 and O3, which precluded the 
development of new high-resolution exposure models and 
few data from a fixed-site monitoring campaign. Moreover, 
the limited fixed-site monitoring campaign suffered from 
instrument failure. Hence, the current report focuses on UFPs 
and BC obtained from the mobile monitoring campaigns.

EXPOSURE ESTIMATES

Mobile Monitoring Campaigns

In both cities, the investigators conducted year-long real-
time mobile monitoring campaigns for UFPs and BC, using 
gasoline vehicles. The campaigns were conducted from 
September 2020 to August 2021, thus during the COVID-19 
pandemic. Monitoring routes were designed to capture a vari-
ety of land use and road types. In total, 14 and 20 routes were 
selected in Montreal and Toronto, respectively. To obtain a 
representative annual average, the monitoring routes were 
measured repeatedly at randomly assigned times of the day 
(daytime and evening), on all days of the week (weekdays 
and weekends), and in all four seasons. Monitoring was con-
ducted, on average, 5 days per week; for each measurement 
day, four routes were monitored for a total route length of  
75 km and a duration of about 4 hours.

UFPs and BC were measured at a 1-second resolution with 
either the Naneos Partector 2 or Testo DiSCmini for UFPs and 
with a microAeth MA350 for BC. Both UFP monitors concur-
rently measured UFP number concentrations (particles/cm3) 
and mean UFP size (nm), and data from the two devices were 
used interchangeably. Both UFP devices capture particles 
with a size range from 10 nm to 300 nm, and the reported 
uncertainty in the measurements can be up to 30%. The mon-
itor calculated the mean UFP size using factory-calibrated 
formulas and assumptions about the particle size distribution 
as opposed to a more sophisticated method that provides 
measurements across the entire particle size distribution. 
Detailed quality assurance checks were performed through-
out the campaign. Values above and below the manufacturer’s 
reported limits of detection were replaced with the upper 
and half of the lower limit of detection, respectively. This 
occurred only in 0.5% of the samples.

The median of the 1-second data was calculated for each 
100-m road segment (equivalent to about 6 seconds of obser-
vation per visit) and averaged over all sampling days; this 
value was log-transformed for UFP number concentrations 
and BC (not for UFP size) and used for subsequent exposure 
modeling. Road segments monitored on fewer than 6 sepa-
rate days throughout the campaign were excluded from the 
analysis. In total, mobile monitoring data were aggregated 
to 5,819 and 7,051 road segments in Toronto and Montreal, 
respectively. On average, road segments were visited on  
10 different days.
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temporally across all roads in Toronto and Montreal; details 
are documented in Ganji and colleagues.24,25

In addition to the backcasting models, the investigators 
examined the exposure models with and without account-
ing for neighborhood-level (i.e., dissemination area, which 
represents a geographic unit with a population of about 
400–700) daily mobility patterns by using data from travel 
demand surveys that are routinely collected in both cities 
every 5 years. The backcasting procedure and adjustment for 
neighborhood-level mobility were not thoroughly evaluated, 
due partly to the absence of historical data, but were applied 
in the health analyses as described below.

Additional Co-pollutant Data

PM2.5 mass concentrations and oxidant gases (Ox, a combi-
nation of NO2 and O3) were obtained from previous models26 in 
the absence of newly developed models. The PM2.5 estimates 
were from satellite-based aerosol optical depth measurements 
that were subsequently adjusted using ground-based monitor-
ing and land use data. The NO2 estimates were from a national 
LUR model, and the O3 estimates were from a chemical trans-
port model, all with different spatial resolutions ranging from 
1 km × 1 km (PM2.5) to 21 km × 21 km (O3). Ox was calculated 
as a weighted average of O3 and NO2 following a formula used 
by Weichenthal and colleagues.27 Co-pollutant data were  
used in the epidemiological analysis as possible confounders 
of the UFP and BC association, as described next.

HEALTH ESTIMATES

Study Population and Mortality Outcomes

The investigators applied the new exposure models to a 
large representative sample of Canadian adults (1.5 million) 
from the CanCHEC cohort residing in Toronto or Montreal. 
The study population included adults who were 25 years 
and older from multiple Census years (1991, 1996, 2001, and 
2006), with mortality follow-up from 2001 to 2016. There 
were 174,200 nonaccidental deaths observed during the 
follow-up period.

Exposure was assigned to the participants using six-digit 
residential postal codes (about the size of a city block) while 
accounting for address changes over time. Three-year moving 
average exposures were used with a 1-year lag to ensure that 
estimates of long-term exposures preceded the outcome.

In terms of mortality outcomes, both nonaccidental mor-
tality and cause-specific mortality were investigated. Causes 
of death that were evaluated included the broad categories of 
cardiometabolic (cardiovascular + diabetes), cardiovascular, 
and nonmalignant respiratory disease, and the more specific 
causes of ischemic heart disease, cerebrovascular disease, and 
lung cancer.

Health Analyses

The investigators conducted Cox proportional hazards 
models to estimate associations between long-term exposures 
to UFP number concentrations and BC from the various models 
and nonaccidental and cause-specific mortality. The analyses 
were adjusted for age, sex, Census cycle, various sociodemo-
graphic factors (education, occupation, income, marital status, 
and minority and immigrant status), co-pollutants, and UFP 
size. Specifically, the UFP number concentrations analyses 
were adjusted for PM2.5, Ox, UFP size, and BC; the BC anal-
yses were adjusted for PM2.5, Ox, UFP size, and UFP number 
concentrations. UFP size was added using a penalized spline 
to capture potential nonlinearities with mortality; a linear 
adjustment for UFP size was explored in an additional anal-
ysis. Single-pollutant models of UFP number concentrations 
and BC were also conducted.

Concentration-response relationships for UFPs and BC 
were characterized for nonaccidental and cause-specific 
mortality using penalized splines. Relationships between 
UFP size and mortality outcomes were also explored. For 
this analysis, only the estimates from the combined exposure 
model (LUR + CNN) with backcasting were used.

All analyses were conducted for both cities combined, and 
city-specific analyses were not conducted.

SUMMARY OF RESULTS

EXPOSURE ASSESSMENT

The LUR models performed better than the CNN models, 
although the predictions of both models were highly cor-
related. The exposure model that combined LUR and CNN 
model predictions performed slightly better as compared to 
LUR models alone and was considered the main exposure 
model in the health analyses. The combined model explained 
approximately half or more of the observed spatial variation 
in UFPs and BC in the test sets; the R2 ranged between 0.49 
and 0.73 (Commentary Table 1).

The final LUR models included various land use and traffic 
variables, ranging from 18 to 27 predictor variables. The pre-
dictor variables differed across UFP number concentrations, 
UFP size, and BC. Only two predictor variables were identical 
for UFP number, UFP size and BC in both cities (residential 
land use area within 100 m and distance to nearest chimney 
or point source reported to the National Pollutant Release 
Inventory for PM). Note that such information cannot be 
extracted from the CNN models, but various visualizations 
provided clues about what features in the images would be 
important for generating a prediction.

For both cities together, the annual average UFP number 
was 14,000 particles/cm3, UFP size was 33 nm, and BC 
concentration was 1,109 ng/m3 at cohort baseline, using the 
combined model (Commentary Figure 2). In the cohort, UFP 
number concentrations were inversely correlated with UFP 
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size (r = −0.54) and were weakly correlated with the other 
air pollutants (r = 0.10–0.38). BC was weakly correlated with 
UFP size (r = 0.09) and moderately correlated with both Ox  
(r = 0.57) and PM2.5 (r = 0.42).

HEALTH ANALYSES

The concentration-response functions for UFP number 
concentrations, UFP size, and BC differed from each other. In 
most cases, the shape of the functions was roughly consistent 
across mortality outcomes. For UFP number concentrations, 
the functions typically flattened and decreased at elevated UFP 
levels. For UFP size, the functions increased continuously 

except for lung cancer, and the function for BC increased 
after a threshold but then decreased at higher concentrations. 
The authors used the shape of the concentration-response 
functions and the observation that particles tend to be smaller 
at higher number concentrations to justify the need to correct 
the main analyses for UFP size.

Using the combined exposure model with backcasting, the 
investigators found that long-term exposures to UFP number 
concentrations and BC were positively associated with non-
accidental, cardiovascular, and respiratory mortality in single-
pollutant models, ranging from 1.03 to 1.10. The hazard ratios 
were sensitive to adjustment for co-pollutants and UFP size. 
After adjusting for UFP size, associations between UFP number 
concentrations and mortality increased, ranging from 1.06 to 
1.17. Associations between BC and mortality became generally 
weaker or null, ranging from 0.98 to 1.02 after adjusting for 
UFP size (Commentary Figure 3 and Commentary Table 2).

Health analyses were also conducted using the alternative 
exposure models without backcasting and accounting for 
mobility patterns. In short, similar findings were reported 
for BC across the different approaches, except for respiratory 
and lung cancer mortality, where a few slightly inverse asso-
ciations were reported. For UFP number concentrations, the 
association’s magnitude — but not the direction — differed 
substantially across the various approaches. Compared 
to the main exposure findings, associations were weaker 
when using the LUR model alone and when accounting for 
mobility. Associations between UFP number concentrations 
and nonaccidental and respiratory mortality became some-
what stronger using the CNN model. Backcasting did not 
change the associations from the main UFP exposure model  
(Commentary Table 2).

HEI IMPROVED EXPOSURE ASSESSMENT 
STUDIES REVIEW PANEL’S EVALUATION

In its independent review of the study, the Panel thought 
the research was well-motivated and addressed a clear 
research gap because there are few long-term air pollution 
and health studies on UFPs. This is partly due to the lack of 
comprehensive monitoring and the difficulties of long-term 

Commentary Table 1. Performance of the Various Models (R2)

City Pollutant LUR Model CNN Model Combined Model

Toronto UFP number concentrations
UFP size
BC

0.71
0.56
0.60

0.66
0.43
0.53

0.73
0.55
0.61

Montreal UFP number concentrations
UFP size
BC

0.59
0.48
0.58

0.49
0.41
0.50

0.60
0.49
0.60

BC = black carbon; CNN = convolutional neural network; LUR = land use regression; UFP = ultrafine particles.

Commentary Figure 2. Annual average concentrations in 
Toronto and Montreal from the combined exposure model with 
backcasting for UFP number concentrations, UFP size, and BC.
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exposure assessment because UFPs vary highly in space and 
time. This research gap was also flagged in a recent systematic 
review from HEI on long-term exposure to traffic-related air 
pollution and health outcomes.15

In summary, the exposure models that combined LUR and 
CNN model predictions performed slightly better as com-
pared to LUR models alone. The combined model explained 
half or more of the observed spatial variation in UFPs and BC 
and was considered the main exposure model in the health 
analyses. Long-term exposures to UFP number concentra-
tions and BC were positively associated with mortality in 
single-pollutant models. The effect estimates were sensitive 
to adjustment for co-pollutants and UFP size. Associations 
between UFP number concentrations and mortality increased 
after adjusting for UFP size, whereas associations between BC 
and mortality became generally weaker or null. Generally, 
similar findings were reported for BC across various alter-
native exposure assessment approaches, including without 
backcasting and accounting for mobility patterns. For UFP 
number concentrations, the association’s magnitude — but 
not the direction — differed substantially across the various 
alternative exposure approaches.

STRENGTHS OF THE STUDY

The Panel noted several strengths of the research. First, the 
extensive year-long mobile monitoring campaign in both cities 

was an impressive achievement. The investigators collected a 
rich dataset on UFPs and BC that covered various times of 
day between 7 a.m. and 11 p.m., weekdays, and weekends — 
thus including those times of day when people might be 
more likely to be at home — and all four seasons. Most other 
mobile monitoring campaigns have collected less data at each 
site, sampled during more restricted periods such as business 
hours only, or had short monitoring durations lasting only a 
few months.28 This effort was even more impressive because 
the investigators had to navigate several unforeseen setbacks 
partly due to the COVID-19 pandemic.

Second, the rigorous development of new high-resolution 
models of within-city spatial variability in annual outdoor 
UFPs and BC was notable. Strengths of the LUR models 
were the large list of potential predictor variables, allowing 
for nonlinear relationships, and the strategy to avoid over-
fitting the data. The predictor variables in the LUR models 
differed across UFP number concentrations, UFP size, and 
BC, facilitating the estimation of “independent” effects in 
the epidemiological analyses because the correlation across 
pollutants was low to moderate. The innovative features of 
the state-of-the-art CNN models were considered another 
strength. The use of Google Maps images offers the potential 
for the CNN models to be scalable.

Third, evaluating the sensitivity of the epidemiological 
analyses to different exposure assessment approaches was 

Commentary Figure 3. Adjusted hazard ratios for UFP number concentrations (per 10,000 particles/cm3) and BC (per 500 ng/m3) and 
selected mortality outcomes using the combined exposure model with backcasting.
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considered another strength. The investigators leveraged a 
large representative sample of Canadian adults (1.5 million) 
from the CanCHEC cohort residing in Toronto or Montreal 
for this evaluation; this study design minimizes possible 
selection and participation bias. They conducted both single-
pollutant and multipollutant models and included various 
sensitivity analyses.

Although the Panel broadly agreed with the investigators’ 
conclusions, some limitations should be considered when 
interpreting the results, as explained next.

THE ADJUSTMENT FOR UFP SIZE

The adjustment for UFP size in health analyses of out-
door UFP number concentrations and BC was intriguing 
but requires further investigation. The authors provided 
justifications as to why the adjustment for UFP size was 
important in the current study and, more broadly, for future 
epidemiological analyses to obtain “unbiased” estimates of 
UFP number concentrations. They depend heavily on their 
recent discussion paper on estimating the causal effects of 
PM2.5 using causal inference methods.29 In that paper, they 
discuss a possible violation of one of the assumptions of 
causal inference methods, called the “causal consistency” 
assumption, which entails that the exposure or “treatment” is 
defined with enough specificity that different versions of the 
exposure do not have different effects on the outcome. They 
argue that PM2.5 mass is a complex mixture — thus not a single 
treatment — with many features related to chemical compo-
sition, size, and other physical and biological properties of 
PM2.5 that could be relevant for health.30 Hence, variations in 
PM2.5 components might translate into different versions of 
treatment, and the causal effect estimate of PM2.5 mass could 
be biased if it does not account for those complexities.29 
Similar arguments were made for UFP number concentrations 
in the Investigators’ Report, and the investigators therefore 
adjusted for UFP size in the current health analyses.

The Panel noted, however, that UFP size can represent 
many things. It might be that UFP size is a marker for some 
other characteristics of UFP (e.g., the age and composition 
of the particles). Alternatively, it might be an indicator for 
some other PM component, something completely different, 
or might even represent traffic noise. There are additional 
reasons to be cautious about the adjustment for UFP size. 
First, UFP size was the mean UFP size calculated by the Testo 
DiSCmini and Naneos Partector 2 instruments as opposed to 
a more sophisticated method that provides measurements 
across the entire particle size distribution. Second, the sta-
tistical approach of using the mean size to represent the com-
plex, potentially nonlinear relationship between UFP size 
and health outcomes and all the other included pollutants 
might have been somewhat simplistic, as further discussed 
below. Third, no other epidemiological cohort study on UFP 
number concentrations has adjusted for UFP size.16 Although 
intriguing, how to interpret UFP size remains unclear and 
warrants further research.

LIMITATIONS IN THE MONITORING DATA

Although the mobile monitoring was extensive and year-
long, 100-m road segments were, on average, visited on 10 
different days, equivalent to about 6 seconds of observation 
per visit. That equates to a total sampling duration of about 
60 seconds per year at each road segment. Longer monitoring 
times would provide more stable estimates of annual average 
UFP and BC levels. On the other hand, in a detailed com-
parison using Google Street View cars in Oakland, California, 
it was documented that only four to eight repeat visits per 
30-m road segment produced robust long-term NO and BC 
exposure models.19,31 Similar evaluation studies reported the 
need for at least 12 visits for stable UFP models.17,32

The absence of fixed-site monitor data prevented an eval-
uation of how well on-road measurements represent outdoor 
concentrations at nonroadway residential locations. Fixed-
site monitor data could also be used for a temporal adjustment 
of the temporally imbalanced mobile measurements instead 
of or in addition to the current adjustment approach relying 
solely on meteorological data. In the absence of balanced data 
(e.g., lacking nighttime data), most other mobile monitoring 
studies have used fixed-site monitor data for the temporal 
adjustment, although questions remain about whether one 
or a few fixed-site monitors can sufficiently represent UFP 
and BC temporal patterns over space.28 Typically, on-road 
measurements are higher than the air pollution values imme-
diately outside residences, but the amount of overestimation 
varies. Partly due to COVID-19, the few fixed-site data that 
were collected in the study were plagued by instrument fail-
ure and eventually were not used in the study.

TEMPORAL MISMATCH AND BACKCASTING

In the application to the cohort, the UFP and BC models 
used were based on measurements that were conducted  
5 years after the end of the mortality follow-up. This tem-
poral mismatch between the period captured by the mobile 
measurements and the exposure window most relevant for 
epidemiological purposes is also apparent in some other 
cohort studies.20,21,33–35 The investigators applied a backcast-
ing procedure based on trends in traffic and NOx emissions 
to overcome the lack of UFP and BC data in earlier years — 
back to 2006. This represents an advance over other studies. 
However, because data were lacking to evaluate the backcast 
surfaces, this procedure could introduce uncertainty that can 
affect the exposure and mortality estimates in unpredictable 
ways, depending on the quality of the data and modeling 
techniques used and how well NOx and traffic counts cor-
relate with UFPs and BC.

Accounting for the inherent (spatially varying) uncertainty 
and biases in modeled estimates of air pollution remains 
largely an unresolved problem in air pollution epidemiol-
ogy,36,37 although recent advances have been made.38–42 Hence, 
it is unsurprising that the investigators did not formally 
propagate uncertainty in the exposure estimates in the health 
analyses, but it remains an important future research topic.
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THE NEED FOR MORE ADVANCED MULTIPOLLUTANT 
STATISTICAL APPROACHES

The investigators conducted single-pollutant and mul-
tipollutant models using Cox proportional hazards models. 
For the multipollutant analyses, they added up to four pol-
lutants or pollutant characteristics as potential confounders 
to the health model, either as a spline (UFP size) or as a 
linear term (co-pollutants). These models help understand 
how pollutants affect the risk when additional adjustments 
for other pollutants are being made. However, the methods 
used to assess multipollutant models might not adequately 
capture the complex relationships among the different pol-
lutants.43,44 For instance, there might be interactions between 
pollutants, and complex mixtures of all pollutants might be 
associated with the risk only when combined. Of particular 
interest is the combined effect of various constituents of an 
air pollution mixture and whether the combined effect differs 
from the effects of those individual pollutants within the 
mixture: combined pollutants might elicit health effects that 
are synergistic, additive, or less than additive. More advanced 
multipollutant statistical approaches might be needed to 
capture those complexities, and the Panel noted this topic as 
an important avenue for further research. Most multipollutant 
statistical approaches to date, however, cannot accommodate 
very large datasets such as CanCHEC. The development of 
multipollutant statistical approaches remains an active area 
of research, and many advanced approaches have been devel-
oped, particularly for omics analyses and in studies of the 
exposome.45–47

Ideally, in multipollutant modeling, pollutants should be 
measured and modeled at the same spatial and temporal scale. 
That approach was not able to be implemented in the current 
study because there were several unforeseen setbacks partly 
due to the COVID-19 pandemic. Those setbacks led to incom-
plete mobile monitoring for NO2 and O3, which precluded 
the development of new high-resolution exposure models. 
Hence, those pollutants (and PM2.5) were obtained from 
previous models and were available only at a much coarser 
resolution. The Panel would also recommend investigating 
NO2 and O3 as separate terms in the health model instead 
of Ox (a weighted combination of NO2 and O3) to facilitate 
comparison with other (non-CanCHEC) studies.

OMISSION OF LIFESTYLE FACTORS IN  
COHORT APPLICATION

One study limitation is the lack of information on potential 
individual lifestyle covariates, such as smoking, in the health 
analyses. The investigators briefly discussed why they think 
the omission of lifestyle factors is not an important issue in 
the current analyses. However, the Panel thought they could 
have deepened that discussion.

A risk factor for mortality (e.g., smoking) confounds 
associations of air pollution with mortality if there is a 
correlation with air pollution exposure and if air pollution 
is not a determinant of that risk factor. Correlations between 

air pollution and lifestyle factors can be mediated by socio-
economic status, and typically, the concern of residual 
confounding by lifestyle factors is reduced by the adjustment 
for multiple socioeconomic variables at the individual and 
neighborhood levels.48 In the current study, the authors did 
adjust for various individual-level sociodemographic factors: 
education, occupation, income, marital status, and minority 
and immigrant status. Those adjustments alleviate the con-
cern to some extent.

There is often an implicit assumption that lack of adjust-
ment for individual-level confounders such as smoking would 
lead to an overestimation of air pollution risks, although this 
assumption has been refuted previously.49 Also, in earlier 
CanCHEC studies26 and the European ELAPSE project,50 
smaller effect estimates were reported in the administrative 
cohorts that lacked lifestyle variables compared to the smaller 
survey cohort and the ELAPSE pooled cohort that had indi-
vidual lifestyle information available. In the US Medicare 
study, smoking was found to be correlated only weakly with 
air pollution exposure conditional on the other covariates 
included in the model.51 In recent systematic reviews of the 
association between PM2.5 and mortality, the meta-analytical 
effect estimates were not affected by excluding administrative 
cohorts that did not have individual lifestyle data avail-
able,52,53 implying that lack of data on smoking might not be 
critical in air pollution studies.

GENERALIZABILITY OF FINDINGS

Although the application to a large representative cohort 
in Toronto and Montreal was considered a strength, the Panel 
had some concerns about the generalizability of the findings. 
Compared to other countries, Canada typically has some of 
the cleanest ambient air quality and can be cold in winter. 
Lower ambient temperatures favor the formation of greater 
numbers of the smallest particles (<50 nm) in the roadside 
environment. Relatively low temperature is associated with 
higher rates of new particle formation and slower atmospheric 
dispersion, indicating that UFP concentrations will generally 
be higher in the winter than in summer.9,54

Canada was an ideal setting for one of the three studies 
in HEI’s comprehensive research initiative to investigate the 
health effects of long-term exposure to low levels of PM2.5, 
which was recently completed.55 CanCHEC was also used for 
that study, but that study included participants nationwide 
and was not restricted to the two largest Canadian cities. 
The PM2.5 concentration was low (10.2 μg/m³) in the current 
study, and due to the limited within-city spatial contrast, 
PM2.5 was not investigated as a main effect — only as a 
confounder. The mean UFP number concentrations (14,000 
particles/cm3) were typical of urban background areas in 
North America and a little lower than typical near-roadway 
locations.11 The mean BC concentrations (1.1 μg/m³) were at 
the low end of what is seen in other epidemiological studies, 
with concentrations typically ranging from 0.65 μg/m³ to 
3.9 μg/m³.5
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Hence, the findings in the current study of two Canadian 
cities might not hold in other settings, also because the moni-
toring was conducted during the COVID-19 pandemic. Thus, 
caution is warranted in generalizing the findings.

OTHER LONG-TERM AIR POLLUTION AND  
HEALTH STUDIES ON UFPS AND BC

Current evidence on the long-term health effects of UFPs is 
limited, and existing studies have not revealed definitive evi-
dence for independent health effects of UFPs from PM2.5.

3,4,9,16 
Although no single long-term study was identified in the HEI 
2013 review, Ohlwein and colleagues16 identified 10 epide-
miological studies that considered long-term UFP exposures, 
with only one study on mortality.56 Additional cohort studies 
on UFPs have been published since the Ohlwein review, 
including two recent studies on mortality.34,57

The few studies of long-term exposure to UFPs and cardio-
respiratory disease or lung cancer have been limited mainly 
to populations within one or a few cities.21,33,35 Nationwide 
studies have emerged more recently.34,57–59 See Commentary 
Table  3 for a summary of selected studies. The current 
study adds to the small evidence base, but a clear research 
gap remains, and additional long-term UFP health studies 
are needed. Routine, long-term monitoring of UFPs and BC 
would be valuable to support such studies.

Compared to UFPs, there is more literature on the long-
term health effects of BC, but similar questions remain as to 
the independent health effects of BC, particularly given the 
often-high correlation with UFPs, NO2, and other combustion-
related indicators.15, 61–63

SUMMARY AND CONCLUSION

Dr. Weichenthal and colleagues have assessed associa-
tions of long-term exposures to outdoor UFPs and BC with 
mortality in Toronto and Montreal, Canada, using several 
different exposure modeling approaches. The research was 
well-motivated and addressed a clear research gap. The 
extensive year-long mobile monitoring campaign and the 
rigorous development and innovative features of the new 
high-resolution models were considered to be strengths of the 
study. Another strength was the use of a large representative 
sample of Canadian adults to evaluate the sensitivity of the 
epidemiological analyses to different exposure assessment 
approaches.

The exposure models that combined LUR and CNN model 
predictions performed slightly better as compared to LUR 
models alone. The combined model explained half or more 
of the observed spatial variation in UFPs and BC and was 
considered the main exposure model in the health analyses. 
The study documented that long-term exposures to UFP 
number concentrations and BC were positively associated 
with mortality in single-pollutant models. The effect esti-
mates were sensitive to adjustment for co-pollutants and UFP 
size. Associations between UFP number concentrations and 

mortality increased after adjusting for UFP size, whereas asso-
ciations between BC and mortality became generally weaker 
or null. Generally, similar findings were reported for BC 
across various alternative exposure assessment approaches, 
including without backcasting and accounting for mobility 
patterns. For UFP number concentrations, the association’s 
magnitude — but not the direction — differed substantially 
across the various alternative exposure approaches. Although 
the Panel broadly agreed with the investigators’ conclusions, 
some limitations should be considered when interpreting the 
results.

Importantly, the adjustment for mean UFP size in health 
analyses of outdoor UFP number concentrations and BC was 
intriguing. However, it remains unclear how to interpret UFP 
size and this remains an area that warrants further research. 
More advanced multipollutant statistical approaches might 
be needed to capture the complex relationships among the 
different pollutants. Some uncertainties were noted in the 
monitoring and exposure assessment approaches, such as 
the lack of fixed-site monitoring and the temporal mismatch 
between the period captured by the mobile measurements 
and the exposure window most relevant for epidemiological 
purposes. The findings in the current study of two Canadian 
cities might not be generalizable to other settings, partly due 
to distinct characteristics of these cities. Data from mobile 
monitoring are useful for developing machine learning 
models and other exposure models but can have important 
limitations. Therefore, careful consideration is needed when 
using them in exposure assessment or epidemiological 
analyses.
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ABBREVIATIONS AND OTHER TERMS

	 BC		  black carbon

	 CanCHEC		  Canadian Census Health and Environment 
Cohort

	 CI		  confidence interval

	 CNN		  convolutional neural network

	 EC		  elemental carbon

	 HR		  hazard ratio

	 ICD-10		  International Classification of Diseases, 
Tenth Revision

	 IQR		  interquartile range

	 LUR		  land use regression

	 MSE		  mean square error

	 NAAQS		  National Ambient Air Quality Standards

	 NO2		  nitrogen dioxide

	 NOx		  nitrogen oxides

	 O3		  ozone

	 Ox		  oxidant gases (a combination of NO2 and O3)

	 PM		  particulate matter

	 PM10		  particulate matter ≤10 μm in aerodynamic 
diameter

	 PM2.5		  particulate matter ≤2.5 μm in aerodynamic 
diameter

	 RFA		  request for applications

	 RMSE		  root mean square error

	 SD		  standard deviation

	 UFP		  ultrafine particles

	 US EPA		  United States Environmental Protection 
Agency

	 WHO		  World Health Organization
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