Review Panel on:

HEI Program to Assess Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution

Final reports

Sverre Vedal, MD

SCHOOL OF PUBLIC HEALTH

UNIVERSITY of WASHINGTON

May 25, 2021

Some context for low levels

- plausibility our Bayesian prior
- fewer susceptible to dying at low concentrations, so lots of data needed
- but, data quality inversely related to data quantity?
- advanced and new statistical methods
- causal modeling revolution or another tool in the toolkit?

3 studies

Today's three overarching topics:

- 1. Multipollutant modeling and findings
- 2. Control of confounding, including "causal" modeling
- 3. Concentration-response functions (CRFs)

Multipollutant modeling and findings: MAPLE - Canada

- description
 - 2 cohorts, 2nd for more confounder data
 - PM_{2.5} (1x1km), O₃/Ox and NO₂ with different spatial resolution
- <u>findings</u>
 - marked attenuation of PM_{2.5} association & effect modification by Ox (not O₃)
- <u>issues</u>
 - the matter of controlling for (and modification by) O₃ and Ox ("not a direct biological impact of the oxidant gases themselves")

Multipollutant modeling and findings: <u>ELAPSE - Europe</u>

- description
 - "pooled" (ESCAPE) and multiple administrative cohorts
 - PM_{2.5}, NO₂, O₃, BC all at 100x100m; only few "low"
- <u>findings</u>
 - moderate attenuation of PM_{2.5} association in "pooled" cohort, and more marked in administrative cohort
 - NO₂ assoc robust; O₃ assoc remains negative
- <u>issues</u>
 - is attenuation due to confounding by co-pollutants?
 - the matter of negative association (& controlling) for O_3

Multipollutant modeling and findings: <u>US Medicare</u>

- description
 - age ≥65 y
 - PM_{2.5}, NO₂, O₃ at 1×1 km, but applied to zip code
- findings
 - PM_{2.5} assoc robust to O₃, but attenuated when <u>both</u> O₃ and NO₂; NO₂ and O₃ assocs (positive here) largely unaffected with PM_{2.5}
- <u>issues</u>
 - spatial scales
 - interpretation of attenuation

Control of confounding: <u>MAPLE -</u> <u>Canada</u>

- description
 - control confounding with linear covariate terms in Cox models added stagewise
 - used smaller cohort allowing for indirect control of larger set of confounders
- <u>findings</u> minimal impact of adjustment for added "behavioral" risk factors, but HRs vary by region
- <u>issues</u>
 - indirect control of missing confounders
 - do marked differences in PM_{2.5} effect <u>by region</u> in Canada indicate residual confounding or variation in toxicity?

Control of confounding: <u>ELAPSE -</u> <u>Europe</u>

- description
 - linear terms in Cox models added in stages
 - ancillary survey data for additional confounders, allowing indirect adjustment in Cox model
- <u>findings</u>
 - PM_{2.5} and NO₂ (not O₃) effects increase in 4/7 admin cohorts (incl Norway) with more confounders
 - impacts inconsistent when adding external confounders
- <u>issues</u>
 - indirect control (Shin method) of missing confounders

Control of confounding, including "causal" modeling: <u>US Medicare</u>

- description
 - also use ancillary data set for additional confounders
 - "causal" modeling only here, so far
- findings
 - PM_{2.5} effects insensitive to traditional addition of added confounders
 - "causal" modeling results largely consistent with traditional modeling, although attenuated at low conc
- <u>issues</u>
 - advantages/assumptions of "causal" models
 - other approach for unmeasured confounders

Concentration-response functions: MAPLE - Canada

- description
 - has the lowest PM_{2.5} concentrations
 - used cubic (and restricted) smoothing spline
 - SCHIF (Shape-Constrained Health Impact Function) originally only here, then eSCHIF
 - also analyses restricted to low concentrations
- <u>findings</u>
 - supralinear with flattening at higher concentrations

Concentration-response functions: MAPLE - Canada

• <u>issues</u> –

- wiggly CRFs using smoothing splines because of large data sets?
- what about the SCHIF? Cls narrowest at minimum concentrations
- understanding flattening at higher concentrations

Concentration-response functions: ELAPSE - Europe

- description
 - used natural smoothing spline
 - also applied SCHIF
 - and analyses restricted to low concentrations
- findings
 - also supralinear with flattening at higher concentrations
- issues
 - understanding flattening at higher concentrations
 - different countries/populations contributing to different parts of CRF

Concentration-response functions: US Medicare

- description
 - used kernel smoother
 - and analyses restricted to low concentrations
- <u>findings</u>
 - largely linear CRFs, although HRs larger at PM_{2.5}<12 ug/m³
- <u>issues</u>
 - characterizing CRF as "linear" doesn't reflect the apparent larger PM_{2.5} HRs at low (<12ug/m³) concentrations

In summary: multipollutant modeling and findings

- some evidence for "confounding" by copollutants, but issues raised about multipollutant models are still largely unresolved
- different spatial scales of pollutant predictions and of ambient concentrations are problematic
- the uncertain matter of ozone

In summary: control of confounding, including "causal" modeling

- associations generally persist with more confounder control, although some evidence for impact of better control
- assess success of application of "indirect" methods for enhancing control of confounders
- want to conclude "causal" based on observational data; how to weight findings from "causal" modeling?
- unmeasured confounders?

In summary: concentration-response functions (CRFs)

- approaches to addressing low concentration issue
 - 1) restriction; 2) modeling the CRF; 3) threshold models
- low concentration associations in all cohorts
- largely supralinear/linear shapes
 - "most potential for harm at low levels" difficult to swallow, but:
 - <u>example</u>: diff between 5ug/m³ and 15, vs 40 and 50
 - <u>toxicology</u>: dose-dependent transitions
 - the SCHIF
- threshold models no better fit than non-threshold models

Next Steps for the Review Panel

- 1. completion of the commentaries
- 2. integrative synthesis of all three studies

Blank