
HEI Research Report 222 Additional Materials 

ADDITIONAL MATERIALS 

Research Report 222 

Cardiometabolic Health Effects of Air Pollution, Noise, 
Green Space, and Socioeconomic Status:

 The HERMES Study  

Ole Raaschou-Nielsen et al. 

Appendix Tables A1–A4, Appendix Figures A1–A4, and 
Method for Multiexposure Analyses 

The Additional Materials were reviewed for spelling, grammar, and cross-references to the main report. It has not 
been formatted or fully edited by HEI. This document was reviewed by the HEI Review Committee. 

Correspondence may be addressed to Dr. Ole Raaschou-Nielsen at the Danish Cancer Institute, Strandboulevarden 
49,2100 Copenhagen, Denmark; email: ole@cancer.dk.  

Although this document was produced with partial funding by the United States Environmental Protection Agency 
under Assistance Award CR–83998101 to the Health Effects Institute, it has not been subjected to the Agency’s peer 
and administrative review and, therefore, may not necessarily reflect the views of the Agency; no official 
endorsement by it should be inferred. The contents of this document have not been reviewed by private party 
institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or 
policies of these parties; no endorsement by them should be inferred. 

© 2024 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110 



1 
 

HEI Raaschou-Nielsen Research Report 222 

Additional Materials 

Contents 
Appendix Table A1. Associations between air pollution and type-2 diabetes in the Danish 
population, 2005–2017, in three adjustment models. ................................................................ 2 
Appendix Table A2. Associations between air pollution and myocardial infarction in the 
Danish population, 2005–2017, in three adjustment models. .................................................... 3 
Appendix Table A3. Associations between air pollution and stroke in the Danish population, 
2005–2017, in three adjustment models. ................................................................................... 4 
Appendix Table A4. Seasonal variation in lipid levels and blood pressure (mean ± SD). ........ 5 
Appendix Figure A1. Associations (beta-estimates with 95% CI)1 between air pollution 
means of five time windows, and HDL (“good cholesterol”). .................................................. 6 
Appendix Figure A2. Associations (beta-estimates with 95% CI)1 between air pollution 
means of five time windows, and systolic and diastolic blood pressure. .................................. 7 
Appendix Figure A3. Associations (percentage with 95% CI)1 between air pollution means 
of five time windows and CRP. ................................................................................................. 8 
Appendix Figure A4. Associations (beta-estimates with 95% CI)1 between air pollution 
means of five time windows and HbA1c. .................................................................................. 9 
Method for Multiexposure Analysis ........................................................................................ 10 
 
  



2 
 

Appendix Table A1. Associations between air pollution and type-2 diabetes 
in the Danish population, 2005–2017, in three adjustment models. 
 

  HR (95% CI) per IQR 

Air Pollutant IQR Model 11 Model 22 Model 33 

PM2.5 (µg/m3)     
   Total 1.85 1.013 (1.003; 1.024) 1.043 (1.032; 1.054) 1.043 (1.031; 1.056) 
      Other sources 1.63 0.988 (0.976; 0.999) 1.031 (1.019; 1.043) 1.020 (1.007; 1.032) 
      Local traffic 0.37 1.020 (1.016; 1.025) 1.019 (1.015; 1.024) 1.026 (1.020; 1.031) 
Ultrafine particles (#/cm3)     
   Total 4,248 1.006 (0.998; 1.014) 1.043 (1.035; 1.052) 1.052 (1.042; 1.063) 
      Other sources 2,769 0.993 (0.985; 1.000) 1.030 (1.023; 1.037) 1.027 (1.019; 1.036) 
      Local traffic 1,698 1.021 (1.014; 1.028) 1.036 (1.030; 1.043) 1.049 (1.040; 1.058) 
Elemental carbon (µg/m3)     
   Total 0.28 1.007 (1.002; 1.013) 1.021 (1.016; 1.026) 1.022 (1.016; 1.027) 
      Other sources 0.12 0.989 (0.984; 0.995) 1.005 (1.002; 1.008) 1.003 (0.999; 1.007) 
      Local traffic 0.17 1.023 (1.017; 1.028) 1.028 (1.022; 1.033) 1.037 (1.030; 1.043) 
NO2 (µg/m3)     
   Total 7.15 1.023 (1.016; 1.030) 1.041 (1.034; 1.048) 1.056 (1.046; 1.065) 
      Other sources 2.68 1.006 (0.998; 1.014) 1.046 (1.037; 1.054) 1.043 (1.034; 1.053) 
      Local traffic 5.17 1.023 (1.016; 1.029) 1.030 (1.024; 1.036) 1.039 (1.031; 1.047) 

 
1 Model 1: adjusted for age, sex, and calendar year. 
2 Model 2: Model 1 plus adjustment for marital status, individual and family income, country of 
origin, occupational status, and education. 
3 Model 3: Model 2 plus an adjustment for area-level percentage of the population with low income, 
with only basic education, who are unemployed, with manual labor, with a non-Western background, 
with a criminal record, who are sole-provider, and who live in social housing. 
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Appendix Table A2. Associations between air pollution and myocardial 
infarction in the Danish population, 2005–2017, in three adjustment 
models. 
 

  HR (95% CI) per IQR 

Air Pollutant IQR Model 11 Model 22 Model 33 

PM2.5 (µg/m3)     
   Total 1.85 0.983 (0.969; 0.998) 1.019 (1.004; 1.034) 1.053 (1.035; 1.071) 
      Other sources 1.63 0.989 (0.973; 1.006) 1.032 (1.015; 1.049) 1.051 (1.032; 1.069) 
      Local traffic 0.37 0.991 (0.985; 0.998) 0.996 (0.990; 1.003) 1.011 (1.003; 1.018) 
Ultrafine particles (#/cm3)     
   Total 4,248 0.961 (0.950; 0.972) 1.001 (0.990; 1.013) 1.040 (1.025; 1.055) 
      Other sources 2,769 0.974 (0.964; 0.985) 1.014 (1.003; 1.024) 1.034 (1.022; 1.046) 
      Local traffic 1,698 0.963 (0.953; 0.972) 0.984 (0.974; 0.994) 1.011 (0.999; 1.024) 
Elemental carbon (µg/m3)     
   Total 0.28 0.966 (0.957; 0.975) 0.989 (0.981; 0.998) 1.009 (1.000; 1.019) 
      Other sources 0.12 0.969 (0.960; 0.977) 0.994 (0.987; 1.001) 1.001 (0.996; 1.007) 
      Local traffic 0.17 0.981 (0.973; 0.989) 0.992 (0.984; 1.000) 1.013 (1.003; 1.023) 
NO2 (µg/m3)     
   Total 7.15 0.969 (0.960; 0.979) 0.994 (0.984; 1.004) 1.027 (1.013; 1.040) 
      Other sources 2.68 0.984 (0.973; 0.996) 1.025 (1.014; 1.037) 1.048 (1.034; 1.062) 
      Local traffic 5.17 0.972 (0.963; 0.981) 0.986 (0.977; 0.995) 1.009 (0.998; 1.020) 

 
1 Model 1: adjusted for age, sex, and calendar year. 
2 Model 2: Model 1 plus adjustment for marital status, individual and family income, country of 
origin, occupational status, and education. 
3 Model 3: Model 2 plus an adjustment for area-level percentage of the population with low income, 
with only basic education, who are unemployed, with manual labor, with a non-Western background, 
with a criminal record, who are sole-provider, and who live in social housing. 
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Appendix Table A3. Associations between air pollution and stroke in the 
Danish population, 2005–2017, in three adjustment models. 
 

  HR (95% CI) per IQR 

Air Pollutant IQR Model 11 Model 22 Model 33 

PM2.5 (µg/m3)     
   Total 1.85 1.067 (1.054; 1.081) 1.083 (1.069; 1.097) 1.077 (1.061; 1.094) 
      Other sources 1.63 1.083 (1.068; 1.099) 1.108 (1.092; 1.124) 1.091 (1.074; 1.108) 
      Local traffic 0.37 1.008 (1.002; 1.014) 1.006 (1.001; 1.012) 1.004 (0.998; 1.011) 
Ultrafine particles (#/cm3)     
   Total 4,248 1.021 (1.011; 1.031) 1.041 (1.030; 1.051) 1.039 (1.026; 1.052) 
      Other sources 2,769 1.025 (1.016; 1.034) 1.045 (1.035; 1.054) 1.038 (1.028; 1.049) 
      Local traffic 1,698 1.004 (0.995; 1.012) 1.010 (1.002; 1.019) 1.003 (0.992; 1.014) 
Elemental carbon (µg/m3)     
   Total 0.28 1.007 (1.000; 1.014) 1.014 (1.007; 1.021) 1.009 (1.001; 1.018) 
      Other sources 0.12 1.002 (0.998; 1.007) 1.008 (1.004; 1.011) 1.005 (1.000; 1.009) 
      Local traffic 0.17 1.007 (1.000; 1.014) 1.008 (1.002; 1.015) 1.005 (0.996; 1.013) 
NO2 (µg/m3)     
   Total 7.15 1.020 (1.012; 1.029) 1.029 (1.020; 1.038) 1.028 (1.017; 1.040) 
      Other sources 2.68 1.058 (1.047; 1.069) 1.082 (1.071; 1.093) 1.077 (1.065; 1.089) 
      Local traffic 5.17 1.005 (0.997; 1.013) 1.007 (0.999; 1.015) 1.001 (0.991; 1.010) 

 
1 Model 1: adjusted for age, sex, and calendar year. 
2 Model 2: Model 1 plus adjustment for marital status, individual and family income, country of 
origin, occupational status, and education. 
3 Model 3: Model 2 plus an adjustment for area-level percentage of the population with low income, 
with only basic education, who are unemployed, with manual labor, with a non-Western background, 
with a criminal record, who are sole-provider, and who live in social housing. 
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Appendix Table A4. Seasonal variation in lipid levels and blood pressure 
(mean ± SD). 
 
Reproduced from Roswall et al. 2023 by permission of Elsevier. © 2023 Environmental Research. 
 
 
 HDL Non-HDL Systolic Blood 

Pressure 
Diastolic Blood 
Pressure 

 Spring, March–May 1.59 ± 0.43 3.38 ± 1.00 116.08 ± 15.58 80.49 ± 10.79 
 Summer, June–August 1.59 ± 0.44 3.39 ± 1.01 114.44 ± 15.63 79.47 ± 10.89 
 Fall, September–November 1.57 ± 0.44 3.44 ± 1.01 116.20 ± 15.85 80.60 ± 10.90 
 Winter, December–February 1.58 ± 0.44 3.50 ± 1.05 117.18 ± 16.06 80.97 ± 10.90 

https://www.sciencedirect.com/journal/environmental-research
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Appendix Figure A1. Associations (beta-estimates with 95% CI)1 between 
air pollution means of five time windows, and HDL (“good cholesterol”). 
 
Reproduced from Roswall et al. 2023 by permission of Elsevier. © 2023 Environmental Research. 
 
 

 
 
1 Adjusted for age, age-squared, sex, marital status, education, income, smoking before blood draw (yes/no), 
hours since last smoke, environmental tobacco smoke, alcohol before blood draw, physical activity (yes/no), 
hours of physical activity/week, body mass index, percentage of parish population having low income, having 
only basic education, living in social housing, and green space at the residence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.sciencedirect.com/journal/environmental-research
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Appendix Figure A2. Associations (beta-estimates with 95% CI)1 between 
air pollution means of five time windows, and systolic and diastolic blood 
pressure. 
 
Reproduced from Roswall et al. 2023 by permission of Elsevier. © 2023 Environmental Research. 
 
 
 
 

 
 
1 Adjusted for age, age-squared, sex, marital status, education, income, smoking before blood draw (yes/no), 
hours since last smoke, environmental tobacco smoke, alcohol before blood draw, physical activity (yes/no), 
hours of physical activity/week, body mass index, percentage of parish population having low income, having 
only basic education, living in social housing, and green space at the residence. 
  

Systolic (●) and diastolic (□) blood pressure 

https://www.sciencedirect.com/journal/environmental-research
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Appendix Figure A3. Associations (percentage with 95% CI)1 between air 
pollution means of five time windows and CRP. 
 
 
 
 
 
 

 
1 Adjusted for age, age-squared, sex, marital status, education, income, smoking before blood draw (yes/no), 
hours since last smoke, environmental tobacco smoke, alcohol before blood draw, physical activity (yes/no), 
hours of physical activity/week, body mass index, percentage of parish population having low income, having 
only basic education, living in social housing, and green space at the residence. 
  

CRP 
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Appendix Figure A4. Associations (beta-estimates with 95% CI)1 between 
air pollution means of five time windows and HbA1c. 
 
 
 
 

 
 
1 Adjusted for age, age-squared, sex, marital status, education, income, smoking before blood draw (yes/no), 
hours since last smoke, environmental tobacco smoke, alcohol before blood draw, physical activity (yes/no), 
hours of physical activity/week, body mass index, percentage of parish population having low income, having 
only basic education, living in social housing, and green space at the residence. 
 
 
  

HbA1c 
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Method for Multiexposure Analysis 
 
 
Introduction. It was a secondary aim of the HERMES study to develop a new statistical 
method to separate the health effects of correlated exposures (multiexposure analyses).  
 
The traditional approach for multiexposure models has been to include only a limited number 
of pollutants with limited correlation using standard regression methodology. The reason is 
that the inclusion of highly correlated pollutants in a regression analysis may make parameter 
estimates unstable and hard to interpret. Reduction in included pollutants has been achieved 
by different means such as pre-screening to ensure that the correlation between two pollutants 
is below a threshold, pre-regression analyses where one pollutant is regressed on another and 
subsequently only including the first pollutant along with the residuals from the pre-
regression in the final regression model, or penalized regression as in LASSO, where the 
model-fitting procedure is tuned to find the smallest subset of pollutants, which still provides 
an acceptable fit of the observed outcomes. While these approaches each have their merits, 
they share the same underlying weakness: they depend on a number of parametric 
assumptions. In particular, it is assumed a priori that the pollutants have a linear effect on the 
outcome and that this effect is not modified by levels of other pollutants or covariates. The 
assumptions can be relaxed by building more complex regression models. This, however, 
introduces more arbitrary and hard-to-justify choices in the statistical analysis, which reduces 
the reproducibility and generalizability of the results. If the underlying parametric 
assumptions are violated for the pollutant in focus or even for covariates, the conclusions can 
be invalid. 
 
The idea of a new method. We intended to solve this problem by a fundamentally different 
modeling approach inspired by the principles guiding the rapidly growing scientific field of 
causal inference (Pearl 2009; VanderWeele 2015) in combination with the tools of machine 
learning. 
 
From a statistical perspective, the traditional regression-based approaches for multipollutant 
data as discussed above aim to describe the expected outcomes for any combination of values 
for all pollutants, co-pollutants, and covariates. This is a very demanding aim, which can only 
be achieved by introducing hard-to-justify parametric assumptions. Moreover, that ambition 
is more than what is needed to address our true scientific question: “How does a change in 
one of the pollutants affect the outcome, if everything else is kept fixed?” We would address 
that scientific question without relying on a battery of parametric assumptions. 
Specifically, we would approach the problem in two distinct phases. In phase 1, we would 
employ a random forest, which is a computer-intensive approach. The method works by 
constructing a large number of decision trees to determine if a given observation is a case; to 
reduce the correlation between trees, each tree is built on a random subset of the data and 
includes only a random subset of the predictor variables. The final probability is obtained as 
the average probability across thousands of such trees. The random forest provides a 
likelihood of being a case for a given combination of exposures and covariates. (i.e., “if 
covariate A is below X and covariate B is above Y, but below Z, etc.”). The advantage is that 
the method does not require parametric assumptions or limited dependency between the 
predictor variables. The random forest methodology has been developed to include survival 
outcomes and competing risks (Mogensen et al. 2012). While random forests are good at 
capturing interdependencies and nonlinearities of multipollutant data, they do not provide 
interpretable parameter estimates, which would be achieved in phase 2 of our approach. In 
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phase 2, we would initially introduce the pollution scenarios, which we would like to 
compare to pinpoint the effect of the single pollutants. For example, to shed light on the 
effect of pollutant A, we could consider scenarios such as the following:  
 

• Scenario 0: Assume all pollutants and covariates were as observed.  
• Scenario 1: Assume pollutant A was increased by one unit, while all other pollutants 

and covariates were as observed.  
 
For each of these scenarios, the random forest from Phase 1 would be employed to simulate 
the likelihood of outcomes. These simulated data sets could be compared using whatever 
scale is most informative (e.g., hazard ratios to facilitate comparison with traditional Cox 
models). Standard errors are obtained by multiple iterations of phase 2 for a given pair of 
scenarios. The use of specified scenarios to analyze the effects of components follows the 
ideas introduced in the causal inference field. The proposed method can be viewed as a 
version of G-computation (Robins 1986). While the random forest — and specifically the 
individual prediction trees — will not in themselves be biologically interpretable, this is not a 
shortcoming because we only require that the predictions based on averages are accurate. 
 
The script. We have developed a script intended for analyses of multipollutant data 
following the principles outlined above and shown in Figure 1. The script has two steps: 
afforestation and then prediction and analysis. 
 
Step 1: Afforestation 
Using the R-function randomForest, we created a random forest-based fit on the same 
variables as included in our Cox analyses. All parameters had the same resolution as in the 
Cox analyses. For each pollutant, the variables included were: the pollutant, age, sex, 
calendar year, education level, personal and household income, marital status, and ethnicity 
as well as area-level information on the proportion of inhabitants living in social housing, 
being sole providers, being unemployed, having non-Western background, having only basic 
education, having manual labor, or having a criminal record. Due to limitations of the server 
capacity, a separate random forest was generated for each year of age and combined in the 
“predict” stage (described below). Random forests were generated for PM2.5, UFP, EC, and 
NO2. An annotated sample script is included below. A forest was also created including 
simultaneously all four pollutants and further forests were generated later in the exploration 
process, but coding-wise they were similar to the one described below. In each age stratum, 
we looked at one-year events. This made censoring negligible. 
 
Step 2: Prediction and analysis 
We defined scenarios of interest, e.g., comparing all exposed to PM2.5 as observed with all 
exposed to PM2.5 as observed + IQR/10, with IQR being the interquartile range of PM2.5 
exposure in the data set. All other factors were observed in both scenarios. 
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Figure 1. The principle of the proposed new method for multiexposure analyses. 
 
 
 
 
 
 
 
Step 1: 
 
 
 
 
 
 
 
 
 
 
Step 2: 
 
 
 
 
 
 
 
 
Based on the age-specific random forest generated above, the probability of each record (a 
specific person, at a specific age) being a case in each scenario, was determined (R-function 
predict) and according to this likelihood they were randomly classified as cases or non-cases. 
Data for all ages and the two scenarios were combined, forming a simulation data set 
containing one record, per person, per year, per scenario. Finally, the relative risk of being a 
case in the two scenarios was calculated by a traditional Cox model. An annotated sample 
script is included below. Note that the Cox model is not used to understand the pollutant as 
such. It is merely used to quantify/simplify the predictions created by the predict step. 
The estimates of uncertainty/SD were determined from at least 50 simulation runs. However, 
as these very computation-intensive and precise variance estimates were irrelevant to model 
development, this step was not included in the scenarios investigated. The SD estimates in 
this document are, therefore, crude estimates and likely to be underestimated. 
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Table 1. Comparison of linear estimates in traditional Cox model and new random forest-
based model. Both models were based on the same national data set (HR relates to risk of 
type 2 diabetes)   

PM2.5 
 

UFP 
 

EC  NO2 

Interquartile 
range (IQR) 

1.84 µg/m3  4.068 particles/cm3  0.27 µg/m3  6.44 µg/m3 

Cox-estimates 
per IQR 

1.04 (1.03-1.06) 
 

1.05 (1.04-1.06) 
 

1.02 (1.02-1.03)  1.06 (1.05-1.07) 

 

 Scenarioa HR SDb 
 

HR SD 
 

HR SD  HR SD 

Random forest-based estimates, forest including all four pollutants 

 +IQR/10 1.058 0.004 
 

1.054 0.004 
 

1.069 0.004  1.041 0.004 
 

-IQR/10 1.066 0.004 
 

1.086 0.004 
 

1.074 0.004  1.098 0.004 

Random forest-based estimates, forest including only one pollutant 

 +IQR/10 1.054 0.004 
 

1.098 0.004 
 

1.022 0.004  1.014 0.004 

 -IQR/10 1.072 0.004 
 

1.062 0.004 
 

1.071 0.004  1.090 0.004 

             

 +IQR/100 0.985 0.004 
 

0.985 0.004 
 

0.985 0.004  0.981 0.004 

 -IQR/100 0.988 0.004 
 

0.986 0.004 
 

0.994 0.004  0.992 0.004 

 
         

 
  

 +IQR/50 0.989 0.004 
 

0.984 0.004 
 

0.986 0.004  0.974 0.004 

 -IQR/50 0.995 0.004 
 

0.994 0.004 
 

0.997 0.004  0.998 0.004 

 
         

 
  

 +IQR/20 1.011 0.004 
 

0.999 0.004 
 

0.992 0.004  0.987 0.004 
 

-IQR/20 1.022 0.004 
 

1.016 0.004 
 

1.022 0.004  1.029 0.004 

 
a: Comparing a scenario with air pollutants as observed and a scenario where all have changed by a fraction of the interquartile range (IQR). 
b: SDs are crude estimates. 
 
 
Model validation. The aim of the method was to enable the disentangling of effects of 
multiple correlated exposures. To investigate the basic validity of the approach, we initially 
conducted analyses focusing on single pollutants using type 2 diabetes as the health endpoint. 
We evaluated scenarios contrasting exposure as observed with exposure as observed plus or 
minus IQR/10. The HRs were substantially larger than those observed in a traditional Cox 
model based on an identical data set and identical covariates. Even more disconcerting, 
regardless of whether exposure increased or decreased, the diabetes HR increased (Table 1). 
 
We subsequently followed different paths to try to find the explanation for these unrealistic 
results: 

1) One possible explanation might be imprecise exposure estimates due to too many 
persons being assigned exposures rarely observed in the input data. We, therefore, 
explored changing exposure by smaller fractions of IQR. Both increasing and 
decreasing exposure by IQR/100 and IQR/50 produced HRs close to the null, likely 
due to the increment being too small to produce discernable effects. For IQR/20, both 
increasing and decreasing PM2.5 exposure produced elevated point estimates, whereas, 
for UFP, EC, and NO2, risk increased with decreasing exposure and was close to 1 for 
increasing exposure (Table 1). 

2) These inexplicable associations led us to explore another issue: as attested by plots 
produced when predicting the likelihood of being a case, the air pollutant was by far 
the most influential factor in determining the likelihood of being a case (Figure 2). As 
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all variables in the random forest prediction approach are essentially treated as 
categorical (with the cut-points determined as part of the fitting procedure), we 
speculated that the high resolution of air pollution allowed it to reflect other risk 
factors. For NO2 and PM2.5, we therefore created random forests based on the air 
pollutants being categorized into seven categories as in previous Cox analyses. This 
reduced the relative influence of the air pollutant substantially (Figure 3). 

3) In this dataset, we then investigated scenarios comparing all individuals set to the 
lowest/reference category and all individuals set to each of the six other categories. 
However, this did not produce HRs resembling the results of the Cox analysis (Table 
2). 

4) We also evaluated scenarios “all as observed” versus all increased one category level, 
except for those in the highest category who remained at that level thus preventing 
exposures not observed in input data. We also tried to reduce all exposures to one 
categorical level, except the lowest. This produced increasing risk with both 
increasing and decreasing exposure levels (Table 2).  
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Figure 2. Influence plot of all covariates in the random forest-based prediction of 
diabetes risk, with PM2.5 as a continuous variable. The plot depicts results for age=79. 
Other ages were similar (data not shown). 

 
 
 
 
Figure 3. Influence plot of all covariates in random forest-based prediction of diabetes 
risk, with PM2.5 in seven categories. The plot depicts results for age=79. Other ages were 
similar (data not shown). 
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Table 2. Comparison of categorical estimates in traditional Cox model and new random forest-based model 

PM2.5 Cox 
Cases 

Cox HR RF HR  
 

NO2 Cox 
Cases 

Cox HR RF HR  

<8.69  19.722  1.00  ref.  
  

<9.88  18.969  1.00  ref  
 

8.69-9.40  25.779  0.99 (0.97-1.00)  0.76  (0,75-0,76)  
 

9.88-11.8  25.697  1.03 (1.01-1.05)  0.79  (0.78-0.79)  

9.40-10.3  39.069  1.01 (0.99-1.03)  0.67  (0.66-0.67)  
 

11.8-14.7  38.999  1.06 (1.04-1.08)  0.68  (0.67-0.68)  

10.3-11.3  35.343  1.06 (1.03-1.08)  0.74  (0.73-0.74)  
 

14.7-19.0  33.831  1.06 (1.04-1.08)  0.71  (0.71-0.72)  

11.3-11.9  17.980  1.09 (1.06-1.12)  0.92  (0.91-0.92)  
 

19.0-23.4  19.060  1.13 (1.11-1.16)  0.91   (0.90-0.91)  

11.9-12.3  5.279  1.06 (1.02-1.10)  1.16  (1.15-1.17)  
 

23.4-26.8  5.808  1.16 (1.13-1.20)  1.18   (0.85-1.17)  

>12.3  4.860  1.10 (1.06-1.14)  1.52  (1.51-1.53)    >26.8  5.668  1.15 (1.11-1.19)  1.57   (0.64-1.56)  
           

All increased 1 categorical levela  1.14  (1.13-1.15)  
   

  1.21   (0.83-1.20)  

All decreased 1 categorical levelb 
  

 1.23  (1.21-1.24)          1.13   (0.89-1.12)  

a: Except highest category 
b: Except lowest category 
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Figure 4. Frequency of difference in predicted probability of being a diabetes case, 
between the two scenarios:  “all observations having PM2.5 exposure as observed plus 
IQR/10” and “all observations having PM2.5 exposure as observed minus IQR/10.”  

 
 

 
 
 
 

5) Air pollution in Denmark shows geographical gradients due to long-distance transport 
from neighboring countries and urban areas generate their own peaks. Therefore, as an 
alternative way of addressing the potential issue of the finely detailed air pollution 
data perhaps capturing other risk factors, we generated a random forest for PM2.5 
including population density and geographical region of Denmark as well as living in 
a single-family home and proportion of green area within 1000 meters of residence. 
Both when increasing and decreasing all exposure by IQR/10 we found increased HRs 
(1.04, SD 0.004 and 1.05, SD: 0.005, respectively). 

6) Finally, to determine if the problems occurred already in the machine learning stage, 
we calculated the difference in probability of being a case for each person under the 
+IQR/10 and –IQR/10 scenarios. Figure 4 shows that these differences were normally 
distributed around zero, indicating that the issue creating the strange results occurred 
already in the random forest step. 
  

 
Altogether, we are uncertain about the reason why the method creates unrealistic results and 
how it might be fixed. Since the method does not work with one pollutant, we saw no reason 
to try applying it to multiexposure problems. 
 
We are still confident that relaxing the assumptions inherent in traditional Cox models will be 
an advantage for multiexposure models. However, based on our experience, we suggest that 
the underlying methods – whether that be Random Forest or other machine learning methods 
– need to be redesigned to accommodate survival-type data in a more efficient way and 
handle the situation of extremely rare outcomes. In our setting, the outcomes are rare because 
we have a high temporal resolution, which implies that for any specific person in a specific 
time window, the probability of diabetes (for example) is minimal. The usual “tricks” of 



18 
 

rebalancing would likely not work as we also need the absolute risk estimates to be right. It 
could be that headway could be made by exploring different loss functions for the fit; again, 
the loss functions should reflect the survival nature of the problem. 
 
Conclusions 
With just 8 months left of the HERMES study, we felt forced to give up on making the new 
method work. Instead, we changed course and applied traditional Cox models for two-
exposure and multiexposure analyses to try to identify the most important exposure(s).  
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Annotated sample code for random forest generation (explanatory notes are marked in 
bold) 
 
library(foreign) 
library(survival) 
library(timereg) #Aalen 
library(descr) 
library(ltmle) 
library(randomForest) 
setwd("g:/data/workdata/707239/Aslak/THEIS method") 
 
OUTCOME<-"DIABETES" 
EXPOSET<-"PM25TOTAL" 
 
#input and restrict data 
HERMES100 <- read.csv 
('G:\\Data\\workdata\\707239\\HERMES_analyses\\MetteSorensen\\Diabetes\\Analyses\\Additive_models\\
R\\Data\\pro100tilR_age35plus_1yr.csv') 
HERMES100 <- subset(HERMES100, (age_start >= 50) & (age_start < 80)) 
HERMES100$nowEvent <- HERMES100$case_diabetes 
 
 
#AFFORESTATION, (by year of age due to size,  
#each age-specific part of the forest saved separately 
#Forrest populated by the same parameters as used in Cox-models 
ageInts <- 50:79  
ageDelta <- 1  
 
for(ageTemp in ageInts) 
{ 
  rowNumbers <- which((ageTemp<= HERMES100$age_start) & (HERMES100$age_start < 
(ageTemp+ageDelta))) 
  workData <- HERMES100[rowNumbers, ] 
   
  workData$nowEvent <- factor(workData$nowEvent) 
  rfFit <- randomForest(nowEvent ~  PM25_total_1u_5y + 
male + calyear + education + gOccupation + incomeFAM_ind_5cat + income_ind_5cat + cohab_married + 
ethnic + per_mill_socialhousing + per_mill_soleprovider + per_mill_unemployed + per_mill_manual + 
 per_mill_nonWestern + per_mill_crime + per_mill_lowincome + per_mill_basiceducation, data = 
workData) 
  
 fname<-paste("G:\\Data\\workdata\\707239\\Aslak\\THEIS 
method\\data\\",OUTCOME,"_",EXPOSET,"_skov_age",ageTemp,".Rdata",sep="") 
   
  save(rfFit, file=fname) 
}    
#similar forests created including all four pollutants as well as separately for each of the other 
exposures: NO2_total_1u_5y, 
UFP_total_1u_5y, EC_total_1u_5y : Code not shown 
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Annotated sample code for prediction and analysis (explanatory notes are marked in 
bold) 
 
library(foreign) 
library(survival) 
library(timereg) #Aalen 
library(descr) 
library(ltmle) 
library(randomForest) 
library(tibble) 
setwd("g:/data/workdata/707239/Aslak/THEIS method") 
 
#Import and restrict data 
HERMES100 <- read.csv 
('G:\\Data\\workdata\\707239\\HERMES_analyses\\MetteSorensen\\Diabetes\\Analyses\\Additive_models\\
R\\Data\\pro100tilR_age35plus_1yr.csv') 
# do reductions  
HERMES100 <- subset(HERMES100, (age_start >= 50) & (age_start < 80)) 
HERMES100$nowEvent <- HERMES100$case_diabetes 
 
 
OUTCOME<-"DIABETES" 
EXPO<-"PM25_total_1u_5y" 
 
# Start of scenario def  
# creates 3 scenarios:  
#ScenRef, exposure as observed PropRef=likelihood of being a case 
#ScenP1, exposure as observed + IQR/10 PropP1=likelihood of being a case 
#ScenM1, exposure as observed - IQR/10 PropPM=likelihood of being a case 
 
  HERMES100[paste0(EXPO,"PropRef")]<-NA 
  HERMES100[paste0(EXPO,"PropP1")]<-NA 
  HERMES100[paste0(EXPO,"PropM1")]<-NA 
 
  HERMES100[paste0(EXPO,"ScenRef")] <- HERMES100[,EXPO] 
  HERMES100[paste0(EXPO,"ScenP1")] <- HERMES100[,EXPO]+(IQR(HERMES100[,EXPO]))/10 
  HERMES100[paste0(EXPO,"ScenM1")] <- HERMES100[,EXPO]-(IQR(HERMES100[,EXPO]))/10 
# end of scenario def 
 
# For each year of age, the appropriate random forests is imported and the likelihood of being a case 
is predicted with the predict function 
 
ageInts <- 50:79  
ageDelta <- 1 
 
for(ageTemp in ageInts) 
{ 
  fname<-paste("G:\\Data\\workdata\\707239\\Aslak\\THEIS 
method\\data\\",OUTCOME,"_",EXPOSET,"_skov_age",ageTemp,".Rdata",sep="") 
   
  load(file=fname) 
 
  rowNumbers <- which((ageTemp<= HERMES100$age_start) & (HERMES100$age_start < 
(ageTemp+ageDelta))) 
  workData <- HERMES100[rowNumbers, ] 
   
#  summary(rfFit) 
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#  varImpPlot(rfFit) 
#  importance(rfFit) 
   
   
# then we use predict 
   
  predData <- HERMES100[rowNumbers, ]  
   
  predData[EXPO] <- predData[paste0(EXPO,"ScenRef")] 
  temp <- predict(rfFit, newdata = predData, type = "prob")[,2] 
  HERMES100[rowNumbers,paste0(EXPO,"PropRef")]<-temp 
   
  predData[EXPO] <- predData[paste0(EXPO,"ScenM1")] 
  temp <- predict(rfFit, newdata = predData, type = "prob")[,2] 
  HERMES100[rowNumbers,paste0(EXPO,"PropM1")]<-temp 
   
  predData[EXPO] <- predData[paste0(EXPO,"ScenP1")] 
  temp <- predict(rfFit, newdata = predData, type = "prob")[,2] 
  HERMES100[rowNumbers,paste0(EXPO,"PropP1")]<-temp 
 
}   
#ANALYSIS P1 vs REF 
 
HERMES100$scen1<-HERMES100[,paste0(EXPO,"PropRef")] 
HERMES100$scen2<-HERMES100[,paste0(EXPO,"PropP1")] 
#randomly assign case status based on case probability in the two scenarios 
 
simData <- data.frame(simEvent = c( 
                rbinom(nrow(HERMES100), size = 1, prob = HERMES100$scen1),  
                rbinom(nrow(HERMES100), size = 1, prob = HERMES100$scen2)),  
                age_start = rep(HERMES100$age_start,2), 
                age_end = rep(HERMES100$age_end,2)) 
 
#for cases, event time is assigned to a random time within age 
simData$age_end_sim <- ifelse(simData$simEvent==1, runif(nrow(simData), min=simData$age_start, 
max = simData$age_end), simData$age_end) 
 
# appending all records and cases status in the two scenarios 
simData$grp <- c(rep(0, nrow(HERMES100)), rep(1, nrow(HERMES100))) 
 
# calculate relative risk of being case under scen2 vs scen1 
fitCox <- coxph(Surv(age_start, age_end, simEvent) ~ factor(grp), data = simData) 
summary(fitCox) 
 
#As the sample size is doubled above, new SD is calculated here based on 50 simulations 
#(This time-consuming step was omitted from development runs reported in the present report) 
 
simHRs <- rep(NA, 50) 
for(ii in 1:length(simHRs)) 
{simData$simEvent <- c(rbinom(nrow(HERMES100), size = 1, prob = HERMES100$prop1), 
rbinom(nrow(HERMES100), size = 1, prob = HERMES100$prop2)) 
 
  simData$age_end_sim <- ifelse(simData$simEvent==1, runif(nrow(simData), min=simData$age_start, 
max = simData$age_end), simData$age_end) 
  fitCoxTemp <- coxph(Surv(age_start, age_end, simEvent) ~ factor(grp), data = simData) 
  simHRs[ii] <- coef(fitCoxTemp)[1] 
} 
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sd(simHRs) 
 
#The above steps were repeated for comparison of other scenarios and for Air pollutants 
– code not included 
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