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A B O U T  H E I

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent research 
organization to provide high-quality, impartial, and relevant science on the effects of air pollution on health. 
To accomplish its mission, the Institute

•	 identifies the highest-priority areas for health effects research

•	 competitively funds and oversees research projects

•	 provides an intensive independent review of HEI-supported studies and related research

•	 integrates HEI’s research results with those of other institutions into broader evaluations

•	 communicates the results of HEI’s research and analyses to public and private decision-makers.

HEI typically receives balanced funding from the US Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United States 
and around the world also support major projects or research programs. HEI has funded more than 380 
research projects in North America, Europe, Asia, and Latin America, the results of which have informed 
decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, 
and other pollutants. These results have appeared in more than 260 comprehensive reports published by 
HEI, as well as in more than 2,500 articles in the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are committed to 
fostering the public–private partnership that is central to the organization. The Research Committee solicits 
input from HEI sponsors and other stakeholders and works with scientific staff to develop a Five-Year 
Strategic Plan, select research projects for funding, and oversee their conduct. The Review Committee, which 
has no role in selecting or overseeing studies, works with staff to evaluate and interpret the results of funded 
studies and related research.

All project results and accompanying comments by the Review Committee are widely disseminated 
through HEI’s website (www.healtheffects.org), reports, newsletters, annual conferences, and presentations to 
legislative bodies and public agencies.

http://www.healtheffects.org
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A B O U T  T H I S  R E P O RT

Research Report 221, Assessing the National Health, Education, and Air Quality Benefits of the 
United States Environmental Protection Agency’s School Bus Rebate Program: A Randomized Controlled 
Trial Design, presents a research project funded by the Health Effects Institute and conducted by Dr. 
Sara D. Adar at the University of Michigan School of Public Health, and her colleagues. The report 
contains three main sections:

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the study 
and its findings; it also briefly describes the Review Committee’s comments on the study.

The Investigators’ Report, prepared by Adar and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Review Committee with the assistance 
of HEI staff, places the study in a broader scientific context, points out its strengths and 
limitations, and discusses the remaining uncertainties and implications of the study’s findings for 
public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. Outside technical reviewers and a biostatistician first examine the draft report. The 
report and the reviewers’ comments are then evaluated by members of the Review Committee, 
an independent panel of distinguished scientists who are not involved in selecting or overseeing HEI 
studies. During the review process, the investigators have an opportunity to exchange comments 
with the Review Committee and, as necessary, to revise their report. The Commentary reflects the 
information provided in the final version of the report. 
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HEI’s Accountability Research Program

P R E FA C E

INTRODUCTION

The goal of most air quality regulations is to protect 
the public’s health by implementing regulatory actions 
or providing economic incentives that help to reduce 
the public’s exposure to air pollutants. If that goal is met 
and air pollution is reduced, indicators of public health 
should improve or at least not deteriorate. Evaluating 
the extent to which air quality regulations succeed 
in protecting public health is part of a broader effort 
— variously termed accountability research, outcomes 
research, or research on regulatory effectiveness — 
designed to assess the performance of environmental 
regulatory policies in general. In recent decades, air 
quality in the United States and Western Europe 
has improved substantially, and this improvement is 
attributable to several factors, including increasingly 
stringent air quality regulations. However, the cost of 
the pollution-control technologies and mechanisms 
needed to implement and enforce these regulations 
is often high. It is, therefore, prudent to ask whether 
the regulations have in fact yielded demonstrable 
improvements in public health; results from such 
investigations can inform future efforts.

In 2003, the Health Effects Institute published 
Communication 11, a comprehensive monograph on 
accountability research, titled Assessing Health Impact 
of Air Quality Regulations: Concepts and Methods for 
Accountability Research (HEI Accountability Working 
Group 2003). This monograph was written by the 
members of HEI’s multidisciplinary Accountability 
Working Group after a 2001 workshop to explore this 
topic raised by NRC (1998) and others. Communication 
11 set out a conceptual framework for accountability 
research and identified the types of evidence required 
and the methods by which the evidence should be 
obtained. It has also guided the development of the HEI 
Accountability Research program, which is discussed 
below.

Between 2002 and 2004, HEI issued four requests 
for applications (RFAs), under which eight studies were 
funded (see Preface Table). A ninth study was funded 
later, under Request for Preliminary Applications 
(RFPA) 05-3, “Health Effects of Air Pollution.” Following 
this first wave of research, HEI held further workshops 
to discuss lessons learned, identify key remaining 
questions, and plan a second wave of research. Those 

efforts led to further assessments of progress in 2009 
and 2010 (HEI 2010a; van Erp and Cohen 2009) and 
the issuance of RFA 11-1, “Health Outcomes Research 
— Assessing the Health Outcomes of Air Quality 
Actions.” The first wave of research primarily consisted 
of studies evaluating relatively short-term, local-scale, 
and sometimes temporary interventions; RFA 11-1 
solicited additional studies with a focus on longer-
term, regional- and national-scale regulations, including 
programs targeted at improving air quality surrounding 
major ports, as well as further methods development. 

This preface describes both the framework of 
accountability research as it relates to air quality 
regulations and HEI’s Accountability Research program.

BACKGROUND

The first step in assessing the effectiveness of 
air quality regulations is to measure emissions of the 
targeted pollutants to see whether they have in fact 
decreased as intended. To arrive at changes in health 
that can be attributed to the regulation, additional 
assessments of air quality, exposure, and inhaled dose 
are needed, as described in detail below. To quantify 
past effects on health and to predict future effects 
(US EPA 1999), some accountability studies have used 
hypothetical scenarios (comparing estimated outcomes 
under existing and more stringent regulations) and 
risk estimates obtained from epidemiological studies. 
However, more extensive validation of those estimates 
with data on actual outcomes would be helpful.

The long-term improvements in US air quality have 
been associated with improved health in retrospective 
epidemiological studies (Chay and Greenstone 2003; 
Laden et al. 2006; Pope et al. 2009). Considerable 
challenges, however, are inherent in the assessment of 
the health effects of air quality regulations. Different 
regulations go into effect at different times, for 
example, and may be implemented at different levels 
of government (e.g., national, regional, or local). 
Therefore, their effectiveness needs to be assessed 
in ways that take into account the varying times of 
implementation and levels of regulation. In addition, 
other changes at the same time and place might 
confound an apparent association between pollution 
reduction and improved health, such as economic 

Health Effects Institute Research Report 221 © 2024 	 					   
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trends (e.g., changes in employment), healthcare improvements, 
and behavioral changes (e.g., staying indoors when government 
warnings indicate pollution concentrations are high). 

Moreover, adverse health effects that might have been 
caused by exposure to air pollution can also be caused by other 
environmental risk factors (some of which might have changed 
over the same time periods as the air pollution concentrations). 
These challenges become more pronounced when regulations 
are implemented over long periods and when changes in air 
quality and health outcomes are not seen immediately, thus 
increasing the chance of confounding by other factors. For 
these reasons, scenarios in which regulations are expected to 
have resulted in rapid changes in air quality tend to be among 
the first, and most likely, targets for investigation, rather than 
evaluations of complex regulatory programs implemented over 
multiple years. Studies in Ireland by Clancy and colleagues (2002) 
and in Hong Kong by Hedley and colleagues (2002) are examples 
of such scenarios.

These inherent challenges are well documented in 
Communication 11 (HEI Accountability Working Group 2003), 
which was intended to advance the concept of accountability 
research and to foster the development of methods and studies 
throughout the relevant scientific and policy communities. 
In addition, recent advances in data collection and analytic 
techniques provide an unprecedented opportunity to improve 
assessments of the effects of air quality interventions.

THE ACCOUNTABILITY EVALUATION CYCLE

Earlier conceptual frameworks for linking air pollution 
sources to adverse health effects were further developed in HEI's 
monograph (HEI 2003) in an expanded framework that is still 
relevant today. This framework can be used to identify factors 
along an "accountability evaluation cycle" (see Preface Figure), 
each stage of which affords its own opportunities for making 
quantitative measurements of the intended improvements. 

At the first stage (regulatory action), one can assess whether 
controls on source emissions have in fact been put into place. 
At the second stage (emissions), one can determine whether 
those controls have indeed reduced emissions, whether emitters 
have changed their practices, and whether there have been 
unintended consequences. At the third stage (ambient air 
quality), one can assess whether reductions in emissions have 
resulted in improved air quality. At the fourth stage (personal or 
population exposure), one can assess whether the improvement 
in air quality has reduced people’s actual exposure and whether 
there has been a benefit for susceptible subpopulations (those 
most likely to experience adverse health effects). At this stage, it 
is important to consider changes in time–activity patterns that 
could either increase or reduce exposure. The actual dose that 
an individual’s organs are exposed to should also be considered 
(i.e., whether reductions in exposure have led to reductions in 
concentrations in body tissues such as the lung). Finally, at the 
fifth stage (human health response), one can assess whether 
risks to health have declined, given the evidence about changes 
in health outcomes such as morbidity and mortality that have 
resulted from changes in exposure. The challenge at this stage is 

to investigate the health outcomes that are most directly related 
to exposure to air pollution.

At each stage in the accountability evaluation cycle, the 
opportunity exists to collect evidence that either validates the 
assumptions that motivated the intervention or points to ways 
in which the assumptions were incorrect. The collection of such 
evidence can thus ensure that future interventions are maximally 
effective.

Ultimately, the framework for accountability research will 
need to encompass investigations of the broader consequences 
of regulations, not just the intended consequences. Unintended 
consequences should also be investigated, along with the 
possibility that risks to public health in fact increased, as discussed 
by Wiener (1998) and others who have advanced the concept of 
a portfolio of effects of a regulation.

HEI’S ACCOUNTABILITY RESEARCH PROGRAM

The first wave of HEI’s Accountability Research program 
included nine studies (see Preface Table). These studies involved 
the measurement of indicators along the entire accountability 
evaluation cycle, from regulatory or other interventions to human 
health outcomes. Many of the studies focused on interventions 
that were implemented over relatively short periods of time, 
such as a ban on the sale of coal, reductions in the sulfur content 
of fuels, measures to reduce traffic, and the replacement of old 
wood stoves with more efficient, cleaner ones. Other studies 
focused on longer-term, wider-ranging interventions or events; 
for instance, one study assessed complex changes associated 
with the reunification of the former East and West Germany, 
including a switch from brown coal to natural gas for fueling 
power plants and home-heating systems and an increase in the 
number of modern diesel-powered vehicles in eastern Germany. 
HEI also supported research, including the development of 
methods, in an especially challenging area: assessment of the 
effects of regulations implemented incrementally over extended 
periods of time. In one such study, Morgenstern and colleagues 
(2012) examined changes that resulted from Title IV of the 1990 
Clean Air Act Amendments (US EPA 1990), which aimed at 
reducing sulfur dioxide emissions from power plants by requiring 
compliance with prescribed emission limitations.

HEI later funded four studies as part of the second wave of 
its Accountability program (see Preface Table). Two studies 
evaluated regulatory and other actions at the national or regional 
level implemented over multiple years (Gilliland et al. 2017, Russell 
et al. 2018); a third study evaluated complex sets of actions 
targeted at improving air quality in large urban areas and major 
ports with well-documented air quality problems and programs 
to address them (Meng et al. 2021); and a fourth study developed 
methods to support such accountability research (Zigler et al. 
2016). 

HEI funded a third wave of accountability studies that address 
an array of regional and national regulatory programs (see Preface 
Table). As described in their Investigators' Report, the current 
study by Sara D. Adar and colleagues evaluated the US EPA's 
School Bus Retrofit and Replacement Program authorized under 
the Diesel Emissions Reduction Act. They showed that school 
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attendance and educational achievement had improved in school 
districts selected for funds to replace old diesel school buses 
compared to school districts that were not selected for funding. 
Hystad and colleagues assessed whether air pollution decreases 
related to cumulative long-term national and local traffic 
emission-control programs improved birth outcomes among a 
diverse population of 7.6 million births in Texas between 1996 
and 2016. Harper and Baumgartner and colleagues examined 
the impact of a coal heating ban and heat pump subsidy program 
in villages surrounding Beijing, China, on air quality, air pollutant 
exposure, and markers of respiratory and cardiovascular health 
among 1,000 participants from an existing cohort. This study 
seeks to identify specific mechanisms by which the coal ban 
might have improved health by investigating physical, social, and 
behavioral influences as mediating factors. Kinney and colleagues 
investigated sweeping air pollution control policies that began 
in 2013 across multiple regions of China. They seek to show a 
causal link between regulations, emissions, ambient air pollution, 
and mortality over a 10-year period. Funded under a separate 
RFA, Hakami and colleagues created a source- and location-
specific database of mortality benefits per ton of primary PM2.5, 
NOx, SO2, and ammonia emissions reductions. They showed that 
emissions reductions in larger cities, particularly primary PM2.5, 
could elicit health benefits nationwide (Hakami et al. 2024). 

HEI also continues to fund accountability studies under 
various other RFAs. A study by Stefanie Ebelt, David Rich, 
and colleagues was funded under RFA 20-1A Health Effects 
of Air Pollution and is evaluating the effect of selected policies 
that targeted emissions from motor vehicles and electricity 
generating units on air quality in Atlanta, New York City, and Los 
Angeles. Under RFA 20-1B Air Pollution, COVID-19, and Human 
Health, Kai Chen of Yale University and colleagues conducted a 
multicountry study to evaluate whether changes in mortality are 
associated with changes in ambient NO2 and PM2.5 levels before, 

during, and after COVID-19 lockdowns in China, Germany, Italy, 
and the United States. 

Two other accountability-focused studies were recently 
funded under the Walter A. Rosenblith New Investigator Award. In 
2022, Lucas Henneman of George Mason University was funded 
to estimate the impacts of different emissions sources on daily 
patterns and concentrations of PM2.5 at a fine spatial resolution 
in the United States. He will perform an environmental justice 
accountability analysis of source-related exposure reductions to 
determine how such reductions have been distributed across 
population groups. In 2023, a study by Rachel Nethery of 
Harvard University was funded to develop statistical methods 
for characterizing spatial and racial and ethnic variation in health 
effects associated with exposure to PM2.5 across the United 
States and to design potential policies for reducing PM2.5-
attributable health inequities.

A complete list of accountability studies funded by HEI to 
date is summarized in the Preface Table. The first-wave studies 
are described in more detail in an interim evaluation of the HEI 
Accountability Research program (van Erp and Cohen 2009; van 
Erp et al. 2012). An updated interim discussion of HEI’s recent 
experiences in accountability research is also available (Boogaard 
et al. 2017).

FUTURE DIRECTIONS

The second and third waves of accountability research 
were conceived and prioritized during HEI’s Strategic Plans 
for 2010–2015 (HEI 2010b) and 2015–2020 (HEI 2015). In its 
current Strategic Plan for 2020–2025 (HEI 2020a), HEI seeks 
to continue its leadership role in accountability research by 
prioritizing opportunities for studies that evaluate what methods 
are best suited to assess the effectiveness of further air-quality 
improvements. We envision that future studies will again focus 

Preface Figure. Accountability evaluation cycle. Each box represents a stage in the process between regulatory action and 
human health responses to air pollution. Arrows connecting the stages indicate possible directions of influence. The text below 
the arrows identifies factors affecting the effectiveness of regulatory actions at each stage. At several of the stages, knowledge 
gained from studies on outcomes can provide valuable feedback for improving regulatory or other actions.
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Preface Table. HEI’s Accountability Research Program

Investigator (Institution) Intervention Study or Report Title

First-Wave Studies

RFA 02-1

Douglas Dockery (Harvard T.H. 
Chan School of Public Health, 
Boston, MA)

Coal ban in Irish cities Effect of Air Pollution Control on Mortality and Hospital 
Admissions in Ireland (Research Report 176; 2013)

Annette Peters (Helmholtz 
Zentrum München–German 
Research Center for Environ-
ment and Health, Neuherberg, 
Germany)

Switch from brown coal to natural gas for 
home heating and power plants, changes in 
motor vehicle fleet after reunification of Ger-
many

The Influence of Improved Air Quality on Mortality Risks 
in Erfurt, Germany (Research Report 137; 2009)

RFA 04-1

Frank Kelly (King’s College,  
London, UK)

Measures to reduce traffic congestion in the 
inner city of London

The Impact of the Congestion Charging Scheme on Air 
Quality in London: Part 1. Emissions Modeling and Anal-
ysis of Air Pollution Measurements. Part 2. Analysis of 
the Oxidative Potential of Particulate Matter (Research 
Report 155; 2011)

RFA 04-4

Frank Kelly (King’s College,  
London, UK)

Measures to exclude most polluting vehicles 
from entering greater London

The London Low Emission Zone Baseline Study (Research 
Report 163; 2011)

Richard Morgenstern (Resources 
for the Future, Washington, DC)

Measures to reduce sulfur emissions from 
power plants east of the Mississippi River

Accountability Analysis of Title IV Phase 2 of the 1990 
Clean Air Act Amendments (Research Report 168; 2012)

Curtis Noonan (University of 
Montana, Missoula, MT)

Wood stove change-out program Assessing the Impact of a Wood Stove Replacement Pro-
gram on Air Quality and Children’s Health (Research 
Report 162; 2011)

Jennifer Peel (Colorado State 
University, Fort Collins, CO)

Measures to reduce traffic congestion during 
the Atlanta Olympics

Impact of Improved Air Quality During the 1996 Summer 
Olympic Games in Atlanta on Multiple Cardiovascular and 
Respiratory Outcomes (Research Report 148; 2010)

Chit-Ming Wong (University of 
Hong Kong)

Measures to reduce sulfur content in fuel for 
motor vehicles and power plants

Impact of the 1990 Hong Kong Legislation for Restriction 
on Sulfur Content in Fuel (Research Report 170; 2012)

RFPA 05-3

Junfeng (Jim) Zhang (University 
of Medicine and Dentistry of 
New Jersey, Piscataway, NJ)

Measures to improve air quality during the Bei-
jing Olympics

Cardiorespiratory Biomarker Responses in Healthy Young 
Adults to Drastic Air Quality Changes Surrounding the 
2008 Beijing Olympics (Research Report 174; 2013)

Second-Wave Studies

RFA 11-1

Frank Gilliland 
(University of Southern  
California)

California and federal programs to improve 
air quality, including control of emissions from 
diesel engines and other sources targeted at 
freight transport and ports, as well as station-
ary sources

The Effects of Policy-Driven Air Quality Improvements 
on Children’s Respiratory Health (Research Report 190; 
2017)

Ying-Ying Meng 
(University of California 
Los Angeles)

2006 California Emissions Reduction Plan for 
Ports and Goods Movement to control emis-
sions from road, rail, and marine transporta-
tion, focusing on the ports of Los Angeles and 
Long Beach

Improvements in Air Quality and Health Outcomes 
Among California Medicaid Enrollees Due to Goods 
Movements (Research Report 205; 2021)

Continues next page
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Investigator (Institution) Intervention Study or Report Title

Armistead Russell 
(Georgia Institute of  
Technology)

Programs to control emissions from major sta-
tionary sources and mobile sources in the 
Southeast United States

Impacts of Emission Changes on Air Quality and Acute 
Health Effects in the Southeast, 1993–2012 (Research 
Report 195; 2018)

Corwin Zigler 
(Harvard T.H. Chan School of 
Public Health)

National regulations to improve air quality 
focusing on State Implementation Plans for par-
ticulate matter

Causal Inference Methods for Estimating Long-Term 
Health Effects of Air Quality Regulations (Research 
Report 187; 2016)

Third-Wave Studies

RFA 17-2

Amir Hakami (Carleton Univer-
sity, Canada)

Transportation emission reductions in the 
United States and Canada

Estimating Model-Based Marginal Societal Health Benefits 
of Air Pollution Emission Reductions in the United States 
and Canada (Research Report 218, 2024)

RFA 18-1

Sara D. Adar (University of 
Michigan)

School bus retrofit and replacement program in 
the United States

Assessing the National Health, Education, and Air Qual-
ity Benefits of the United States Environmental Protec-
tion Agency's School Bus Rebate Program: A Randomized 
Controlled Trial Design (Current Report)

Sam Harper and Jill Baumgartner
(McGill University, Canada)

Coal ban and heat pump subsidy program in 
the Beijing, China, region

How Do Household Energy Interventions Work? (In 
Review)

Perry Hystad (Oregon State 
University)

National and local traffic emissions control 
measures in Texas

The TRANSIT Accountability Study: Assessing Impacts of 
Vehicle Emission Regulations and Local Congestion Poli-
cies on Birth Outcomes Associated with Traffic Air Pollu-
tion (In Review)

Patrick L. Kinney 
(Boston University)

Major national air pollution control regulations 
in China

Accounting for the Health Benefits of Air Pollution Regu-
lations in China, 2008–2020 (In Review)

RFA 20-1A

Stefanie Ebelt (Emory Univer-
sity) and David Rich (University 
of Rochester Medical Center)

Transportation and electricity generation emis-
sions reductions in three US cities

Environmental and Health Benefits of Mobile Source and 
Electricity Generating Unit Policies to Reduce Particulate 
Pollution (Ongoing)

RFA 20-1B

Kai Chen (Yale University) COVID-19 pandemic lockdowns in China, Ger-
many, Italy, and the United States

Effect of Air Pollution Reductions on Mortality During the 
COVID-19 Lockdown: A Natural Experiment Study (In 
Review)

Walter A. Rosenblith New Investigator Award

Lucas Henneman (George 
Mason University)

Source-specific emission reductions in the 
United States

Air Pollution Source Impacts at Fine Scales for Long-
Term Regulatory Accountability and Environmental Justice 
(Ongoing)

Rachel Nethery (Harvard  
University)

Health inequity policy design in the United 
States

Designing Optimal Policies for Reducing Air Pollution-Re-
lated Health Inequities (Ongoing)

RFA = request for application; RFPA = request for preliminary application.

Preface Table. HEI’s Accountability Research Program (Continued)
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on large-scale, complex regulations to improve air quality. We 
will continue to develop and implement statistical methods, 
particularly those within a causal inference framework, to tackle 
these complicated questions. In 2023, HEI issued RFA 23-2, 
Assessing Changes in Exposures and Health Outcomes in Historically 
Marginalized and Environmentally Overburdened Communities 
from Air Quality Actions, Programs, or Other Interventions, to fund 
studies that focus on actions to improve air quality targeted at 
historically marginalized communities in the United States. The 
selected studies are starting in 2024.

Throughout its portfolio, HEI emphasizes the importance of 
data access and transparency because they underpin high-quality 
research that is used in policy settings. Thus, HEI continues to 
provide other researchers with access to extensive data and 
software from HEI-funded studies (see https://www.healtheffects.
org/research/databases). In the same spirit, the State of Global 
Air website (HEI 2020b) makes available data on air quality and 
health outcomes for countries around the world. The interactive 
site allows exploration of the data and comparisons among 
countries. The data currently cover 1990–2020 and are updated 
as new data become available.
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Evaluation of a Program to Replace Old Diesel-Powered 
School Buses 
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What This Study Adds
•	 This accountability study evaluated a program for 

replacing old diesel school buses with new, lower- 
emitting buses across the United States.

•	 The investigators compared student educational 
performance, school attendance, and respiratory 
emergency department visits among children in 
school districts that were selected for funding via a 
lottery mechanism with those in districts that were 
not selected for funding.

•	 Student educational performance and school 
attendance improved in districts that were selected 
for funding to replace old buses and improved the 
most in districts that replaced the oldest (pre-1990) 
diesel-powered school buses. There was no clear 
effect on emergency department visits.

•	 Community-level fine particle air pollution concen-
trations improved in school districts that had been 
selected for funding with the largest gains in districts 
that replaced the oldest buses, although it was not 
clear to what extent those improvements were 
driven by the new school buses.

•	 As electric school buses and other lower-emitting 
technologies become more widely available, addi-
tional benefits from continuing efforts to replace 
older school buses are expected and should be 
assessed.

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Sara D. 
Adar at the University of Michigan School of Public Health and her colleagues. Research Report 221 contains the detailed Investiga-
tors’ Report and a Commentary on the study prepared by the HEI Review Committee.

BACKGROUND

Air pollution accountability research evalu-
ates the extent to which policies aimed at improv-
ing air quality produce the intended reductions 
in pollutant concentrations and improvements to 
public health. A major challenge in this research 
field is isolating changes that can be attributed 
to the policy in question from changes that 
might be due to other unrelated regulations or 
long-term trends. This challenge is a particular 
concern when policies target numerous pollut-
ant sources, affect large geographic regions, and 
take several years to fully implement.

Dr. Sara D. Adar of the University of Michigan 
and colleagues proposed to evaluate a United 
States Environmental Protection Agency pro-
gram for funding to replace or retrofit old school 
buses that was implemented under the Diesel 
Emissions Reduction Act. This nationwide 
program, which was piloted in 2012 and con-
tinues in various forms to date, provides rebates 
to replace or retrofit older and more polluting 
diesel school buses. The use of school buses 
with newer technologies is intended to reduce 
the exposure of students and other people 
living in the community to air pollution with 
the intent of improving student health and 
educational performance. Funding is awarded 
to applicants based on a lottery system. The 
investigators used the random allocation of 
funding for applications submitted to school 
districts in the continental United States 
between 2012 and 2017 to assess whether this 
program improved student health and educa-
tional performance and community air quality, 
all at the school district level.

APPROACH

Adar and colleagues evaluated the effects 
of the school bus replacement program by 
comparing school districts that were randomly 
selected in a lottery to those that entered the 
lottery but were not randomly selected (see 
Statement Figure). To see whether being 
selected for funding affected student health 
(based on school attendance and respiratory 

emergency department visits) or student performance 
(based on standardized tests of math and reading, writing, 
and related skills [hereafter referred to as reading]), the 
investigators compared these outcomes during the school 
year in which the school district entered the lottery to 
the following school year, when new school buses were 
expected to be in use.

To make the comparisons, the investigators collected 
information on lottery application details via a Freedom 
of Information Act request to the United States Environ-
mental Protection Agency. They collected information 
on absenteeism and other school district characteristics 
from federal and state departments of education and on 
math and reading standardized test scores for children 
in grades 3–8 from a harmonized national dataset. They 
also obtained data on respiratory emergency department 
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visits of school-aged children from low-income (i.e., 
Medicaid) health insurance records and on fine partic-
ulate air pollution for each school year from a publicly 
available dataset from air quality modeling.

In their comparisons, Adar and colleagues accounted 
for student educational performance and health prior to 
the lottery, the region of the country in which the school 
district was located, and other school district character-
istics. They tested the robustness of their results in many 
ways. For example, they compared results for school 
districts based on the ages of the school buses slated for 
replacement because larger gains would be expected the 
older the age (and therefore the higher the emissions) of 
the school bus being replaced.

KEY RESULTS

Adar and colleagues included 406 school districts 
that were selected for funding and 2,613 school districts 
that were not selected for funding in their analyses. 
School districts that were selected for funding had 
similar size, student demographics, and family incomes 
to those that were not selected for funding. Compliance 
with the intervention was high; 91% of school districts 
that were selected for funding documented the purchase 
of new school buses and scrappage of old school buses 
to receive the funding. Not all selected school districts 
had information available on what type of new school 
buses they purchased (if any), but in most cases where 
such information was available, old diesel school buses 
were replaced with new, less polluting diesel school 
buses. Few school districts that were selected for fund-
ing reported purchasing school buses that ran on other 
fuels, only one school district reported retrofitting a 
bus with emissions control technologies, and no school 
districts reported purchasing an electric school bus. No 
information was available on whether school districts 
that were not selected for funding also purchased new 
school buses or retrofit their existing school buses.

Adar and colleagues reported that in the year after 
the lottery, student test scores and school attendance 
improved the most in school districts that replaced the 
oldest (pre-1990) diesel school buses with newer school 
buses. There was also some indication of standardized 
test score and school attendance improvements in school 
districts where school buses slated for replacement were 
1990s model years. The investigators indicated that the 
size of the effects on school attendance and test scores 
was comparable to those of typical interventions to 
reduce class size. They estimated that replacing pre-
2000 model year buses through the program resulted in 
about 350,000 additional student-days of school atten-
dance, presumed to be because of improved health, 
that otherwise would have been absences.

There was also a decrease in community-level, outdoor 

fine particle concentrations (i.e., a 1-µg/m3 reduction) 
observed in the year after the lottery in districts where 
pre-1990 school buses were replaced. The magnitude of 
this decrease surprised the investigators because typical 
total outdoor fine particle concentrations in the United 
States are about 8 µg/m3 and there are many other sources 
of air pollution. They could not identify any alternative 
explanations for these findings because the results did not 
change when they analyzed the data in different ways, for 
example, by looking at the change in outdoor fine parti-
cle concentrations instead of the concentrations them-
selves. They also showed that the outdoor fine particle 
concentration results did not change when accounting 
for potential differences or changes in school district 
characteristics or missing and excluded applications. 
Changes in emergency department visits for respiratory 
outcomes between communities selected for funding 
and not selected for funding were inconsistent and did 
not appear to be related to whether the school districts 
were selected for funding.

Statement Figure. Overview of the study by Adar and colleagues to assess a policy that provided funding to replace 
old school buses via a lottery mechanism. (Adapted from Investigators’ Report Figure 1.)
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HEI REVIEW COMMITTEE EVALUATION AND 
CONCLUSIONS

In its independent evaluation of the study, the 
Review Committee appreciated that Dr. Adar and 
colleagues brought together disparate datasets to 
conduct a novel and useful accountability study of 
a program to allocate funding for the replacement of 
old diesel school buses. Specifically, the Committee 
liked the approach to comparing school districts based 
on whether they were randomly selected for funding 
assuming they had replaced the school buses that they 
intended to replace, similar to how patients are ran-
domly assigned treatments and the data are analyzed in 
trials of new medications. They agreed with the inves-
tigators that being selected for funding appeared to 
improve student educational performance and school 
attendance, especially when the intent was to replace 
pre-1990 school buses, and that the results for emer-
gency department visits were less clear. The magnitude 
of the observed effect of being selected for funding on 
community-level, outdoor air pollution was larger than 
the Committee and the investigators expected, but the 
results were robust to sensitivity analyses (see above) 
and an alternative explanation could not be found. It 
was not clear how changing out a relatively small num-
ber of school buses could affect air quality in a school 
district so much. The Committee thought that the main 
results for school attendance and standardized test 
scores were well supported by the evidence.

In summary, selection for funding to replace or retrofit 
old school buses as part of the United States Environmen-
tal Protection Agency’s program appears to have improved 
school attendance and standardized test scores, with the 
largest benefits for the replacement of the oldest (i.e., 
pre-1990) diesel school buses. The effects on emergency 
department visits for school-aged children and air quality 
are less clear and need further research. Results of the 
current study provide evidence of benefits of funding for 
school bus replacement programs by federal and state 
agencies. Additional focus on disadvantaged school 
districts and the adoption of new technologies like 
electric buses are also expected to reduce emissions 
from some of the oldest and highest emitting school 
buses. Therefore, it would be valuable to update the 
analyses in the future to evaluate the effects of programs 
to replace more of the older diesel school buses with 
newer and lower-emitting technologies. This work will 
be important to support the health and educational 
performance of schoolchildren and communities.
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INVESTIGATORS’ REPORT

Assessing the National Health, Education, and Air Quality Benefits of the 
United States Environmental Protection Agency’s School Bus Rebate Program: A 
Randomized Controlled Trial Design
Sara D. Adar1, Meredith Pedde1, Richard Hirth2, and Adam Szpiro3

1Department of Epidemiology, University of Michigan School of Public Health; 2Department of Health Management and 
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* A list of abbreviations and other terms appears at the end of this volume.

ABSTRACT

Introduction	 Approximately 25 million children ride buses 
to school in the United States. While school buses remain the 
safest school transport from a traffic accident perspective, 
older buses can expose students to high levels of diesel 
exhaust. These exposures can adversely affect health, which 
might cause missed school days and reduced learning. To 
hasten the transition to cleaner, lower-emission vehicles, the 
US Environmental Protection Agency’s (US EPA*) ongoing 
School Bus Rebate Program randomly allocated over $27 
million to replace older, higher-emission school buses with 
cleaner, lower-emission alternatives between 2012 and 2017. 
Here, we evaluated the effectiveness of this national program.

Methods		 Leveraging the randomized allocation of rebate 
funding, we assessed the impacts of the US EPA’s 2012–2017 
School Bus Rebate Programs on attendance, educational 
achievement, emergency department (ED) visits for respira-
tory causes among children in Medicaid, and community air 
pollution levels. We analyzed all districts linked to applica-
tions with complete data using modified intention-to-treat 
(ITT) modeling for randomized controlled trials, comparing 
changes in school-district levels of each outcome, after versus 
before each lottery year, by funding selection status. We also 
examined the heterogeneity of effects by model years of the 
replaced buses and by quartiles of estimated ridership on 
applicant buses.

Results	 Of the 3,019 applications that met our inclusion cri-
teria, 406 were randomly selected for funding. The districts 
that were linked to these applications were similar in terms 
of size, demographic makeup, funding requests, and socio-
economic status to the districts linked to applications that 
were not selected for funding. The districts that were linked 
to applications selected for funding that replaced the oldest 
buses had improvements in attendance, educational perfor-
mance, and ambient particulate matter ≤2.5 µm aerodynamic 
diameter (PM2.5) concentrations in the year after the lottery, 
compared with districts linked to applications that were not 
selected for funding. Districts that replaced pre-1990 model 
year buses had the largest gains, with 0.45 percentage points 
(pp) and 95% confidence interval (CI) of 0.26 to 0.65 higher 
attendance (equivalent to 45 additional students attending 
school each day in an average-size school district of 10,000 
students), 0.06 standard deviation (SD) higher reading and 
language arts (RLA) (95% CI: 0.05 to 0.07), 0.03 SD higher 
math test scores (0.01 to 0.04), and −1.0 µg/m3 (–1.5 to –0.5) 
lower ambient PM2.5 concentrations compared with districts 
not selected for funding. The replacement of model year 2000 
and newer buses showed almost no effect on these outcomes. 
Districts replacing the oldest buses had suggestively higher 
ED visit rates, but these findings were not statistically distin-
guishable from no association and were sensitive to differing 
model specifications.

Based on the attendance improvements observed alone, 
we estimate that the total investment of $27 million by the 
US EPA for the 2012–2017 lotteries may have resulted in $350 
million of benefits per year, although these benefits could not 
be distinguished from no benefit. Further investment of funds 
to replace all school buses manufactured before the year 1990 
could lead to an additional $400 million of economic benefits 
per year and replacing all school buses manufactured before 
the year 2000 could lead to an additional $1.3 billion of eco-
nomic benefits per year.

Conclusions	 We conclude that the US EPA’s School Bus 
Rebate Program investments to remove very old buses from 
the fleets have positively affected communities.

This Investigators’ Report is one part of Health Effects Institute Research 
Report 221, which also includes a Commentary by the Review Committee 
and an HEI Statement about the research project. Correspondence concern-
ing the Investigators’ Report may be addressed to Dr. Sara D. Adar, Pro-
fessor of Epidemiology, University of Michigan School of Public Health, 
1415 Washington Heights, Ann Arbor, Michigan 48109-2029; email: sadar@
umich.edu. Dr. Adar is a member of the HEI Review Committee and has 
been recused from all discussions of the report.

Although this document was produced with partial funding by the Unit-
ed States Environmental Protection Agency under Assistance Award 
CR–83998101 to the Health Effects Institute, it has not been subjected to 
the Agency’s peer and administrative review and may not necessarily re-
flect the views of the Agency, and no official endorsement by it should be 
inferred. The contents of this document also have not been reviewed by 
private party institutions, including those that support the Health Effects 
Institute; therefore, it may not reflect the views or policies of these parties, 
and no endorsement by them should be inferred. 

mailto:sadar@umich.edu
mailto:sadar@umich.edu
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Assessing Health, Education, and Air Quality Benefits of the US EPA's School Bus Rebate Program

INTRODUCTION

Approximately 25 million children ride buses to school 
each day in the United States.1 Although school buses remain 
the safest means to transport children to school from a traffic 
accident perspective,2 the use of older school buses often means 
children can experience high exposure to diesel exhaust during 
their commutes.3-5 With exposures to pollutants inside school 
buses reaching levels as high as 10 times the levels found in 
ambient air,3-5 even relatively short commutes on highly pol-
luting school buses can contribute a disproportionately high 
fraction to students’ daily air pollution exposures.6 This is of 
great concern given that exposures to diesel exhaust and other 
traffic-related pollutants can adversely affect health,7 increase 
school absenteeism,8,9 and have been associated with lower 
educational performance.10-13

Diesel exhaust can enter school buses indirectly via leaky 
cabins or directly through open windows or doors.3-5,14,15 
Importantly, however, not all school buses have the same 
emissions or generate the same exposures to diesel exhaust. 
For example, the US EPA reports that diesel PM filters reduce 
PM emissions from buses by 60% to 90%.16 Our testing of 
in-cabin air during nearly 600 trips on 200 Seattle school 
buses showed that clean air technologies can result in up to 
50% reductions in particle concentrations inside bus cabins.17 
These reductions in onboard air pollution levels came from 
the use of diesel oxidation catalysts that reduce toxic emis-
sions from the tailpipe as well as closed crankcase ventilation 
systems that minimize emissions from the engine block. Sim-
ilar testing of school buses in Alabama and Colorado found 
similar pollution reductions with the same technologies.18,19 
While this work suggests that school districts should retrofit 
older buses with these technologies or replace them with 
newer buses that incorporate these technologies, retrofits cost 
nearly $10,000 per bus.20 New buses are even more expensive, 
at approximately $100,000 to $300,000 per bus.21 As a result, 
the average school bus is on the road for 16 years before being 
decommissioned, and millions of children ride older, highly 
polluting buses.22-24

To help hasten the transition of school districts to cleaner, 
lower emission vehicles, the US EPA set aside funding to 
help public and private fleet owners replace or retrofit old, 
highly polluting school buses under the National Clean 
Diesel Rebate Program, which was authorized by the Diesel 
Emissions Reduction Act (DERA) of 2010.25 Using a random 
lottery approach to allocate funds, the US EPA awarded over 
$27 million to replace or retrofit school buses between the 
program’s start in 2012 and 2017, and the program continues 
to distribute funds.25-32 Despite this large investment and the 
opportunity for investigation under a classical causal frame-
work, the effectiveness of this rebate program on the health 
or educational performance of students or community air 
quality levels had yet to be evaluated. In addition, general 
research into the effects of school bus clean air technologies 
on health is scarce.

In this study, we took advantage of the randomized allo-
cation of funding for school bus replacements and retrofits to 
causally assess the national effects of the US EPA School Bus 
Rebate Program on student health, educational achievement, 
and community air quality levels. We used school attendance 
and ED visits for respiratory causes as our measures of health 
based on a large literature of exposures to ambient air pol-
lution.33 Previous research has demonstrated relationships 
between cleaner, lower emission school buses, and higher 
attendance rates34 in the Puget Sound17 area and Georgia.35 
Another study documented fewer ED visits by children for 
bronchitis, asthma, pneumonia, and pleurisy among Wash-
ington State school districts that retrofitted their school buses 
compared with those that did not.36 In addition to markers of 
health, we chose to study the educational effects of the US 
EPA School Bus Rebate Program because earlier observational 
work found that school bus retrofits led to improvements in 
test scores in Georgia35 and nationwide,37 and the general 
educational literature has repeatedly demonstrated higher 
educational achievement with better attendance rates.38-40 
Lastly, we evaluated community air quality levels to deter-
mine whether there were additional benefits of this US EPA 
program to populations beyond the school bus riders.

SPECIFIC AIMS

Our study included three project aims:

1.	 To quantify the health impacts of the US EPA’s School 
Bus Rebate Program funding to replace older, higher 
emission school buses with newer, lower emission buses 
as assessed by student attendance rates for all students 
and ED visit rates for respiratory causes in school-aged 
Medicaid beneficiaries (5–18 years old) using a random-
ized controlled trial design.

	 Hypothesis 1a: School districts linked to applications 
selected for funding in a random lottery will see greater 
improvements in student attendance rates after their 
school bus replacements or retrofits compared with school 
districts linked to applications that were not selected for 
funding for school bus replacements or retrofits.

	 Hypothesis 1b: School districts linked to applications 
selected for funding in a random lottery will see greater 
reductions in ED visits for respiratory causes among school-
aged Medicaid beneficiaries (5–18 years old) after their 
school bus replacements or retrofits compared with school 
districts linked to applications that were not selected for 
funding for school bus replacements or retrofits.

2.	 To assess the educational impacts of the US EPA School 
Bus Rebate Program funding to replace older, higher 
emission, school buses with newer, lower emission 
buses, as assessed by educational achievement scores 
using a randomized controlled trial design.
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	 Hypothesis 2: School districts linked to applications 
selected for funding through a random lottery will see 
greater improvements in educational achievement scores 
after receiving funding for school bus replacements or 
retrofits than school districts linked to applications that 
were not selected for funding for school bus replacements 
or retrofits.

3.	 To examine the ambient air quality impacts of the US 
EPA School Bus Rebate Program funding to replace older, 
higher emission, school buses with newer, lower emis-
sion buses, as assessed by average PM2.5 concentrations 
using a randomized controlled trial design.

	 Hypothesis 3: School districts linked to applications 
selected for funding through a random lottery will see 
greater reductions in ambient PM2.5 concentrations in 
their communities after receiving funding for school bus 
replacements or retrofits than school districts linked to 
applications that were not selected for funding for school 
bus replacements or retrofits.

STUDY DESIGN AND METHODS

US EPA SCHOOL BUS REBATE PROGRAM

Starting in 2012, the US EPA’s School Bus Rebate Program 
provided funding to replace diesel-powered school buses that 
had older engines with new diesel, alternate fuel, battery, 
hybrid, or electric school buses (Table 1 and Table A1 in 
Appendix A; available on the HEI website).25-29 From 2015 
through 2017, funding was also permitted for retrofits of school 
buses with diesel oxidation catalysts and crankcase ventilation 
systems.27-29 In 2016 and 2017, additional funding was made 
available for US EPA-verified, fuel-operated heaters onboard 
buses to reduce idling for heat.28,29 While no funding was 
awarded for school bus replacements or retrofits in 2013, for 
brevity we refer to 2012–2017 as our analysis years throughout.

The US EPA’s eligibility criteria allowed school districts 
and private bus transportation companies that serviced 
school districts (herein referred to as “entrants”) to apply for 
funding for up to 5 or 10 buses, depending on program year. 
Entrants could submit up to two applications for a school 
district and year depending on fleet size and program year. 
No restrictions were placed on the number of years that an 
entrant could enter the lottery. Bus transportation companies 
were also permitted to enter the lottery more than once if 
they were requesting funding for buses that serviced different 
school districts.*

There were also specific age requirements for the engines 
eligible to be replaced in each funding cycle and for the type 
and age of eligible replacement engines (see Table 1 and 
Appendix Table A1 for details).

The deadline for each of the rebate programs was the end 
of the calendar year, at which point the US EPA randomly 
selected applications to be funded using a random number 
generator until all available funds were exhausted. Because 
some US EPA regional offices had additional funding for 
school bus replacements, these offices awarded funding to 
additional applications based on the randomized rank of 
applications that did not receive funding from the US EPA 
national program (Appendix Table A2). 

The US EPA notified all entrants at the end of the school 
year if their application was selected for funding. Selected 
entrants then purchased their replacement buses or installed 
retrofits in the summer following the lottery and used their 
new buses for the first time at the start of the next school 
year. For example, all 2012 entrants who had an application 
selected for funding in the lottery replaced their buses in the 
summer of 2013 and began using the new buses at the start 

*Although the US EPA Clean School Bus Program documents state that 
applicants could only submit one application in 2012 and 2014, the data 
indicate that some applicants did submit two applications in these years.

Table 1. Summary of the US EPA School Bus Rebate Program, by Year

Lottery 
Year

Diesel Bus 
Engines 

to be Replaced
Replacement 
Bus Engines

Number of 
Applications 

Allowed

Number of 
Buses Eligible 

per 
Application

Rebate 
Amount 
per Bus

Number of 
Selected 

Applications

Number of 
Unselected 

Applications

Total 
Funding 
Awarded 
(millions)

2012 1994–2003 2012 or later 1 5 $20K–$30K 36 973 $1.88

2014 ≤ 2006 2014 or later 1 5 $15K–$25K 73 474 $3.94

2015 ≤ 2006 2015 or later 1 (if fleet ≤100 buses) 
2 (if fleet >100 buses) 10 $15K–$25K 86 451 $6.04

2016 ≤ 2006 2016 or later 1 (if fleet ≤100 buses) 
2 (if fleet >100 buses) 10 $15K–$25K 92 422 $7.24

2017 ≤ 2006 2017 or later 1 (if fleet ≤100 buses) 
2 (if fleet >100 buses) 10 $15K–$20K 143 403 $8.20

Total 430 2,723 $27.29
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of the 2013–2014 school year, which we refer to throughout 
this analysis as the after lottery year. For 2012 entrants, the 
2012–2013 school year would then be the before lottery 
year. All entrants with applications selected for funding 
were required to submit proof of new bus purchases and of 
scrappage of their old buses. If these entrants failed to do so 
then the funding would not be awarded by the US EPA even 
though the entrant was selected for funding.

STUDY DESIGN

As shown in Figure 1, the core hypothesis that this project 
tested was whether or not school districts served by entrants 
with applications that were randomly selected for funding to 
replace older school buses with newer, lower emission buses 
under the US EPA’s School Bus Rebate Program had greater 
improvements between the year before and the year after the 
lottery in (1) attendance, (2) respiratory-related ED visit rates for 
school-aged children on Medicaid, (3) educational achievement, 
and (4) air quality as compared to districts served by entrants with 
applications not selected to receive funding. Because selection 
in the lottery is random, there should be no systematic bias by 
known or unknown characteristics related to districts served 
by entrants with and without replacements. Similarly, because 
we use outcome measures from administrative datasets that 
are collected independently of school bus allocations, there 
should be no bias in ascertainment by lottery status. As such, 
this randomized controlled trial design and our evaluation of 
districts served by entrants with randomly selected applications 
rather than districts served by entrants with bus purchases 
should provide strong evidence of causal relationships between 
our health, educational, and air quality metrics.

DATA

US EPA School Bus Rebate Program Applications

We obtained data on all 3,153 applications for the 2012–
2017 lotteries from the US EPA under a Freedom of Infor-
mation Act request. The data for all applications included 
the lottery selection status, school district served (when 
an entrant was a private bus transportation company that 
serviced a school district), number of buses requested to be 
replaced or retrofitted, and funding requested. Henceforth we 
use the term ‘district’ to refer to either the school district that 
submitted the application or the school district served by the 
bus transportation company that submitted the application.*

For districts with applications that were ultimately 
awarded funding, we also received information on the engine 
model years of the replaced buses, although this information 
was most often averaged across all replaced buses in the 
district (Appendix Figure A1). Information about the age of 
the buses was not available for districts with applications not 
selected for funding.

For all aims, we restricted our sample to applications 
from entrants that serviced school districts in the continental 
United States that could be matched with individual school 
districts because school districts were our unit of analysis. 
While there were applications from entrants that serviced 
Hawaii that we would have liked to include, all of the 
Hawaiian Islands are part of a single school district, so we 
could not disentangle any units affected by bus replacements. 
Similarly, we excluded private bus transportation companies 
and school district consortium applicants that represented 
multiple school districts. For Aims 1 and 2, we further 
excluded applications from entrants without attendance and 
educational performance reporting requirements (i.e., private 
schools, nontraditional schools [e.g., special education and 
technology centers], and tribal schools).

School District Descriptive Data

To assess the balance of characteristics between entrants 
with selected and unselected applications to the US EPA’s 
School Bus Rebate Program as well as to compare the 
school districts serviced by entrants to the US EPA School 
Bus Rebate Programs to all US school districts, we obtained 
school district information from the US Department of 
Education’s yearly Local Education Agency (School District) 
Universe Survey Data. These publicly available data include 
the number of students (total and by grade and by race and 
ethnicity), number of schools, and urbanicity (i.e., city, sub-
urb, town, rural) of each district. The land area of each school 
district was provided in the National Center for Education 
Statistics School District Geographic Relationship files for the 
school years of 2013–2014, 2015–2016, and 2017–2018. As a 
proxy for district socioeconomic status, we used data on the 
number of students in a school who were eligible for the free 
and reduced-price lunch program during the baseline school 
year from the US Department of Education’s yearly Public 
Elementary/Secondary School Universe Survey Data, which 
we aggregated to the district level.

Attendance Data

For Hypothesis 1a, we collected 2012–2013 through 2018–
2019 school year annual attendance rates for school districts 
served by entrants that submitted funding applications from 
each state’s Department of Education, either from public web-
sites or through individual data requests with a state. Annual 
attendance rates reflect the average number of students pres-
ent at all schools in a district across all days of a school year 
divided by the number of students serviced by that district. 
We focused on annual attendance rate data for both the school 
year before and after the purchase of new buses to have the 
most proximate data to an entrant’s lottery selection status 
and to reduce the influence of trends. In cases where the 
attendance counts were averaged across a school year but the 
number of students serviced by a district was collected on a 
single day, it was possible for the attendance rate to exceed 
100 percent. As our modeling approach quantifies the change 

*Multiple applications could be linked to the same school district if more 
than one bus transportation company serving a district entered the lottery.
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in attendance rates in terms of percentage points, we elected 
to retain the few absolute attendance rates greater than 100 
percent. To ensure that we were using the highest quality 
data, we did void any changes in attendance rates of 5 pp or 
more between the before and after lottery school years. This 
cutoff was consistent with the literature as an indicator of 
unreasonable levels and seemed to be consistent with errors 
in our review of the data.17,41-42

Respiratory-Related Emergency Department Visit Data

We obtained claims and enrollee data from the Research 
Data Assistance Center (ResDAC, a Centers for Medicare 
and Medicaid Services contractor) for all ED visits from 
respiratory causes among school-aged children in Medicaid 
to inform Hypothesis 1b. We restricted our study population 
to children who were at least 5 years old and no older than 18 
years old on September 1 of the school year of interest, had 
full Medicaid eligibility throughout the school year (i.e., Sep-
tember 1 to May 31), and whose home zip code intersected 
one of the school districts served by the US EPA Clean School 
Bus Program entrants. Although we gathered data from the 
Children’s Health Insurance Program (CHIP), we did not 
ultimately use these records because states do not use con-
sistent unique identifiers across years for CHIP children. This 
prevented us from being able to link CHIP participant records 
across time, which was needed to create a complete record 
of the participant’s health and eligibility throughout a school 
year because the data span two calendar years.

To define the total population of interest (i.e., the denomina-
tor of our ED visit rate) and identify any ED visits, we used the 
Medicaid Analytic Extract (MAX) Personal Summary, Inpatient, 
and Outpatient files (for years 2012–2015) and Transformed 
Statistical Medicaid Information System (T-MSIS) Analytic 
(TAF) Demographic and Eligibility, Inpatient, and Outpatient 
files (for years 2014–2019). Two sources of data were required 
because the Centers for Medicare & Medicaid Services (CMS) 
transitioned to a new data system during the years of our study 
period. The two data systems overlapped for two calendar years 
because states transitioned to the new system at different times 
throughout that period. The differences between the two data 
systems are largely unrelated to the data elements we use in 
this work.43 We then used the revenue, place of service, type of 
service, and procedure codes to identify claims originating from 
visits to the ED during the periods that children are typically in 
school (i.e., September 1 to May 31). Our outcome was defined 
by ED visits during the school year with a primary diagnosis 
of asthma (International Classification of Diseases [ICD]-9 code: 
493; ICD-10 code: J4520, J4522, J4521, J449, J440, J441, J45990, 
J45991, J45909, J45998, J45902, J45901), upper respiratory 
infection (ICD-9 code: 460–466, 477; ICD-10 code: J00, J0100, 
J0110, J0120, J0130, J0140, J0190, J029, J0390, J040, J050, 
J0410, J0411, J042, J050, J0510, J0511, J0430, J0431, J060, J069, 
J209, J210, J218, J301, J305, J3081, J302, J3089, J300, J309), or 
pneumonia (ICD-9 code: 480–486; ICD-10 code: J120, J121, J122, 
J1281, J1289, J129, J13, J181, J150, J151, J14, J154, J153, J1520, 
J15211, J15212, J1529, J158, J155, J156, A481, J159, J157, J160, 
J168, B250, A3791, A221, B440, J17, J180, J189). Children did 
not need to have filed claims to be included in the enrollee 

Figure 1. Conceptual framework of the study. Buses with gray plumes represent school buses with higher levels of emissions. Buses 
with white plumes represent school buses with lower emissions. The dice represent the mechanism by which the EPA Clean School 
Bus Program allots funds: a random number generator. Houses with a gray plume represent a neighborhood exposed to higher levels of 
school bus emissions. Houses with a white plume represent a neighborhood exposed to lower levels of school bus emissions.
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file. Because the Medicaid data were aggregated at the level 
of zip code rather than school district, we calculated spatially 
weighted averages from all zip codes that intersected a school 
district. We felt that this approach, which is similar to that of 
Beatty and Shimshack,36 was reasonable given that across the 
nation over 60% of zip codes are nearly entirely contained 
(>90% by area) within a single school district.

Education Data

For Hypothesis 2, we obtained normalized school-district 
test-score data for math and RLA for the 2012–2013 through 
2017–2018 school years from the Stanford Education Data 
Archive 4.1 (SEDA).44 Data were not yet available for the 
2018–2019 school year at the completion of this project. These 
data are derived from state-level testing data for children in 
grades 3 through 8, which is collected under federal mandate 
as a result of the Elementary and Secondary Education Act 
and the former No Child Left Behind Act.45 Because these Acts 
allow for states to select or design a test of their choice that 
measures student achievement relative to the state’s proficiency 
standards, student testing data are not directly comparable 
across location and time. To account for differences in testing 
between states and across time, experts at the Stanford Center 
for Educational Policy Analysis have generated normalized 
educational performance metrics from test results submitted 
to the US Education Department’s EDFacts data system by 
district, grade, and subject.45 These data are the only publicly 
available educational metrics for all US school districts at the 
school-district level that are comparable across the nation. To 
best reflect all children that may ride the buses, we averaged 
SEDA data across grades, by district and year.

Air Quality Data

To evaluate Hypothesis 3, we mapped each school district 
served by an entrant to modeled ambient PM2.5 from September 
1 to May 31, predicted at a 0.01o × 0.01o spatial resolution46, and 
averaged across all grid cells that intersected the school-district 
boundaries. The PM2.5 estimates were predicted globally at a 
monthly scale using measures of aerosol optical depth from 
satellites. Briefly, the researchers used the GEOS-Chem 
chemical transport model, which incorporates physics, 
chemistry, and atmospheric transport, to determine the 
relationship between aerosol optical depth and PM2.5 and to 
generate geophysical estimates of PM2.5. The researchers then 
used monitored levels of PM2.5 and a geographically weighted 
regression to improve their PM2.5 predictions. The model per-
formed well within North America with monthly coefficient of 
determination and root-mean-square error values ranging from 
0.51 to 0.68 and 2.0 to 3.1 µg/m3, respectively.46 

STATISTICAL METHODS AND DATA ANALYSIS

Assessing Balance Between Selected and Unselected 
Lottery Applications

We first compared means (using independent two-sample 
t-tests) and proportions (using Pearson chi-squared test) of 
baseline measured characteristics of the districts served by 

entrants with selected and unselected applications in each 
analytical dataset (i.e., attendance, ED visits, education, and 
air quality) to check for balance among the applications by 
selection status. The baseline year was the before year for 
each application, which is described earlier.

Quantifying Differences Between Selected and 
Unselected Lottery Applications

To evaluate the effect of the US EPA's School Bus Rebate 
Program on each of our outcomes of interest, we analyzed 
data for all applications linked to districts with complete data 
using modified ITT analyses to leverage the benefits of the 
random assignment of funding. Our analysis was considered 
as a modified one because we, by necessity, had to restrict our 
analyses to only those school districts with complete data on 
the outcomes of interest. In our models, we evaluate the effect 
of being selected for funds in the lottery on the outcome in 
the year after the lottery adjusted for the outcome in the year 
before the lottery prior to when the new buses were in use. 
This accounts for any time-invariant differences that occurred 
by chance between districts served by entrants with selected 
and unselected applications. It also supports causal conclu-
sions with the greatest efficiency by focusing on within-area 
differences between the pre- and post-randomization levels.47,48

Our primary analyses for Hypotheses 1a (attendance), 2 
(educational achievement), and 3 (ambient PM2.5 concentra-
tion) outcomes used the following linear regression model 
(Equation 1):

Yit+1 =  β0 + β1Selectedit 				             (1) 

	 + β2Yit  

	 + β3RepeatedDistrictit             

	 + βRegioni  

	 + βTimeit  

	 + ϵit     

To evaluate the effects of the School Bus Rebate Program on 
rates of ED visits among school-aged children (Hypothesis 1b), 
we used the following Poisson regression model (Equation 2):

logE (Yit + 1) = β0 + β1Selectedit 			            (2) 

		   		     	 + β2 (
it

it

Y
Population )                          			

		   		    	 + β3RepeatedDistrictit  

				       	  + βRegioni  

				         	 + βTimeit   

				       	 + logPopulationit+1  

				       	 + ϵit       

In both models, Yit+1 is the continuous outcome for each 
application’s school district i in the school year after the year 
t lottery (i.e., 2012, or 2014–2017 lotteries), at which time the 
new buses were in use. We adjusted for Yit, which is the out-
come for school district i in the school year of lottery t prior 
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to when the new buses were in use. Selectedit is an indicator 
equal to 1 if an application’s school district i was selected to 
receive funding in lottery year t and 0 if not. Therefore, β1 is 
the model outcome of interest as it reflects the ITT effect of 
being selected for funding.

Because the later lottery years allowed entrants with large 
fleets to submit up to two applications and districts could be 
represented more than once by different bus transportation 
companies, we adjusted all models for districts with more than 
one application within a lottery year using the binary indica-
tor RepeatedDistrictit. Similarly, because some US EPA regions 
provided additional funding for the purchase of new, lower 
emission buses, applications from entrants serving districts 
from regions with added funding had an increased likelihood 
of being selected in the lottery. Therefore, we included fixed 
effects for the US EPA regions (Regioni ). To maximize power, 
we included data from all lottery years in our model but 
included fixed effects for the lottery year (Timeit) to adjust for 
any potential confounding over time that may have occurred 
because the percentages of applications selected in the lottery 
changed by year. In our models for the ED visit rate (2), we fur-
ther adjusted for Population, which captures the total number 
of 5- to 18-year-old Medicaid beneficiaries in an application’s 
school district i in the school year before and after the lottery. 
Although there will inherently be some correlation between 
our adjustment variables, collinearity between covariates is 
not a concern because we are not interpreting the coefficients 
for any covariate except the exposure of interest. Importantly, 
these terms were included in our models to get an unbiased 
(i.e., unconfounded) estimate of being selected for funding on 
our outcomes of interest. 

Because entrants are not limited to entering the lottery in 
only 1 year, we estimated associations and 95% CIs using 
general estimating equations (GEE). We fit these models 
using robust standard errors clustered at the state level to 
account for any potential correlation in the data. Clustering 
at the state level in the GEE framework accounts for all cor-
relations across smaller units of aggregation, such as within 
school districts.73 This is the case because the assumption 
required for the validity of GEE is independence between 
clusters, and virtually any correlation structure within clus-
ters is acceptable. We fit our models with an independent 
working correlation structure for computational efficiency. 
Although GEE is robust to the selection of the covariance 
matrix, we also tested exchangeable and autocorrelation 
structures in sensitivity analyses to ensure the robustness 
of our findings.

Effect Modification

Given that older buses were subject to more lenient 
emission standards57, we evaluated the heterogeneity of 
the effects of replacing a bus on our outcomes by age of 
the replaced buses. To do so, we used Equations 3 and 4, 
which replaced the Selectedit indicator in models (1) and 
(2), respectively, with three indicator variables for selected 

applications that replaced pre-1990, 1990–1999, or 2000 
and newer model year buses (Pre-1990it, 1990–1999it, and 
2000plusit, respectively). The reference group for this analy-
sis was therefore the unselected applications. We used this 
approach because we only had average bus age information 
on the buses requested to be replaced from selected appli-
cations and not on the buses represented from applications 
that were not selected for funding.

Yit+1=	β0 + β1Pre-1990it                                                                                                      (3) 

	 + β21990–1999it  

	 + β32000plusit          

	 + β4Yit  

	 + β5RepeatedDistrictit  

	 + βRegioni + βTimeit  

	 + ϵit   

logE (Yit+1)  = β0 + β1Pre-1990it			            (4) 

					     + β21990–1999it  

					     + β32000plusit  

					     + β4 (
it

it

Y
Population )  

					     + β5RepeatedDistrictit  

					     + βRegioni  

					     + βTimeit  

					     + logPopulationit+1  

					     + ϵit     

We also considered if our results were influenced by the 
number of buses replaced in a district served by an entrant. 
As an ecological analysis, we were inherently unable to 
isolate the effects of the intervention on school bus riders. 
Although school bus emissions may affect nonriders when 
buses idle near where students play, study, or wait for other 
transportation,49-51 aggregating data at the school-district level 
will likely dilute the true association for bus riders, especially 
when the district is large relative to the number of buses 
replaced. Therefore, we evaluated effect modification of our 
main associations in Hypotheses 1a, 1b, and 2 by quartiles 
of the fraction of children who are likely to ride the buses 
requested for replacement (i.e., those most directly affected 
by the treatment) (EstimatedRidershipQuartit) using Equation 
5 for Hypotheses 1a and 2 and Equation 6 for Hypothesis 1b. 
With no databases of school bus ridership rates at the district 
level, we estimated this fraction by multiplying the number 
of buses requested for replacement by 72 (the capacity for a 
standard school bus) and dividing by the total student enroll-
ment for a district at baseline. For Hypotheses 3, we examined 
quartiles of the number of buses requested for replacement 
as the effect modifier (NumBusesReqit) to see if entrants that 
applied to replace more buses saw stronger improvements in 
air quality (Equation 7).
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Yit+1 = β0+ β1Selectedit 				             (5) 

	 + β2EstimatedRidershipQuartit               

	 + β3Selectedit × EstimatedRidershipQuartit  

	 + β4Yit  

	 + β5RepeatedDistrictit  

	 + βRegioni  

	 + βTimeit  

	 + ϵit    

logE (Yit+1) = β0 + β1Selectedit 			        (6) 

				    + β2EstimatedRidershipQuartit    

				    + β3Selectedit × EstimatedRidershipQuartit  

				    + β4(
it

it

Y
Population )  

				    + β5RepeatedDistrictit  

				    + βRegioni  

				    + βTimeit  

				    + logPopulationit+1  

				    + ϵit    

Yit+1 = β0 + β1Selectedit 				             (7) 

	 + β2NumBusesReqQuartit  

	 + β3Selectedit × NumBusesReqQuartit  

	 + β4Yit  

	 + β5RepeatedDistrictit  

	 + βRegioni + βTimeit  

	 + ϵit    

Secondary Analyses

We explored effect modification by the fraction of children 
on free and reduced-price lunches as an indicator of poten-
tially sensitive populations and by urbanicity because students 
in rural districts are likely to ride the school bus for more than 
30 minutes in each direction.52 We also looked at effect modi-
fication by the number of schools and number of students in a 
district to see whether results were stronger in smaller districts, 
where a larger fraction of students may have the potential to be 
affected by the bus emissions. We also evaluated effect modifi-
cation of our findings by race and, for Hypothesis 1b, we also 
tested for effect modification of this association by the fraction 
of children enrolled in Medicaid by district.

To study all the effect modifiers mentioned, we used inter-
action terms between the effect modifier of interest and the 
main effect of being selected in the lottery.

Mediation Analysis	 Based on our conceptual model out-
lined in Figure 1, we examined whether (1) respiratory ED 
visits mediated associations between school bus upgrades 
and attendance, and (2) increased attendance rates mediated 

the observed associations between school bus upgrades and 
educational achievement. To do so, we used the methodol-
ogies of VanderWeele.53 Specifically, in the first mediation 
analysis we examined the direct effects of changes in buses on 
attendance as well as the indirect effects through ED visits. In 
the second mediation analysis, we examined the direct effects 
of changes in buses on educational achievement as well as the 
indirect effects through school attendance.

Burden Estimations 	To understand the full benefit of the US 
EPA’s School Bus Rebate Program, we estimated the nation-
wide effects on student attendance by multiplying the total 
number of US students in districts served by entrants with 
selected applications at baseline by the observed primary effect 
estimate (Table 2) and by the number of days in the school year 
(i.e., 180). We further quantified the potential national effects 
of replacing only the oldest buses by using the US EPA’s Age 
Distribution Tool for MOVES2014 to estimate what fraction 
of the US school bus fleet was pre-1990 and, separately, 
1990–1999 in calendar year 2021.23,24 We then applied these 
fractions to the total count of all US students at the midpoint of 
our analysis period (i.e., 50,115,178 children in the school year 
2015–201654) to estimate the attendance benefits based on the 
observed effect sizes for buses of those model years.

We estimated the economic benefits of the US EPA’s School 
Bus Rebate Program using values from the US EPA on the unit 
value of a lost day of school. The US EPA has derived this 
estimate from the economic literature for its Benefits Mapping 
and Analysis Program (BenMAP),55 a tool to calculate the 
economic benefits of environmental regulations. The US EPA 
estimates the value of a lost day of school at a fixed value 
of $1,000 for all of the nation, which incorporates aspects of 
caregiver costs for elementary school children and the loss of 
learning for middle and high school students. Caregiver costs 
are estimated as the average wage income an adult caregiver 
would have earned had they not stayed home with the absent 
child. The loss of learning value is estimated as the effect of a 
single school absence on learning, measured by end-of-course 
test scores. That estimate is then multiplied by estimates of 
the effect of learning on adult income.

We also evaluated how representative the districts served 
by entrants who submitted applications to the US EPA lottery 
were to all US school districts by comparing means (using 
independent two-sample t-tests) and proportions (using 
Pearson chi-squared test) of baseline measured characteristics 
for the US EPA entrant districts (i.e., the before year for each 
entrant) to all US school districts (we used data from the 
2015–2016 school year for the US school districts as it was 
the midpoint of the study period).

Sensitivity Analyses

For Hypothesis 1b (ED visits), our primary analysis 
spatially weighted the Medicaid data from all zip codes con-
tained within a school district served by an entrant, which 
may make it more difficult to detect any true association (i.e., 
introduce bias toward the null) by including additional areas 
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Table 2. Effects of School Bus Replacements on Attendance, Respiratory ED Visits, Educational Performance, and 
Ambient PM2.5 Concentrations for All Replaced Buses, by Model Year Replaced, and by Fraction of Ridership on 
Replaced Buses

Attendance (pp) ED Visits (% change) Education: RLA (SD) Education: Math (SD) PM2.5 (µg/m3)

Model
Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Overall effect 
of replacement

0.06a –0.01, 
0.13

3.5b –2.3, 
9.7

0.005c –0.008, 
0.017

–0.001d –0.011, 
0.010

–0.04e –0.11, 
0.04

Effect of replacement for different model years of replaced busesf

pre-1990 0.45 0.26, 
0.65

4.9 –5.0, 
15.8

0.062 0.050, 
0.074

0.025 0.011, 
0.039

–0.95 –1.45, 
–0.45

1990-1999 0.10 –0.03, 
0.23

–8.8 –21.1, 
5.5

–0.003 –0.020, 
0.014

–0.012 –0.032, 
0.009

–0.04 –0.15, 
0.08

2000 and 
newer

–0.03 –0.16, 
0.09

9.2 0.8, 
18.2

0.003 –0.011, 
0.018

0.001 –0.014, 
0.016

–0.01 –0.08, 
0.06

Effect of replacement by ridership on buses requested for replacementg,h,i

Quartile 1: –0.01 –0.15, 
0.14

4.1 –2.5, 
11.1

0.013 –0.004, 
0.029

0.005 –0.011, 
0.022

0.08 –0.05, 
0.22

Quartile 2: 0.05 –0.05, 
0.16

3.4 –9.8, 
18.6

0.005 –0.017, 
0.027

0.012 –0.010, 
0.033

–0.09 –0.19, 
0.02

Quartile 3: 0.05 –0.10, 
0.19

1.8 –23.8, 
35.9

–0.024 –0.049, 
0.001

–0.019 –0.044, 
0.007

–0.11 –0.27, 
0.05

Quartile 4: 0.14 –0.05, 
0.32

–4.1 –17.1, 
10.9

0.024 –0.010, 
0.057

0.001 –0.028, 
0.030

–0.05 –0.19, 
0.09

P value: 0.69 P value: 0.77 P value: 0.13 P value: 0.38 P value: 0.22

a Dependent variable is the attendance in the year after the lottery. Model is adjusted for the attendance in the year before the lottery, US EPA 
Region, lottery year, and an indicator for having more than one application in a given lottery year.

b Dependent variable is the number of respiratory-related ED visits among 5- to 18-year-old Medicaid beneficiaries in the year after the lottery. 
Model is adjusted for the ED visit rate for respiratory causes in the year before the lottery, US EPA Region, lottery year, and an indicator for 
having more than one application in a given lottery year.

c Dependent variable is the RLA standardized test score in the year after the lottery. Model is adjusted for the RLA standardized test score 
in the year before the lottery, US EPA Region, lottery year, and an indicator for having more than one application in a given lottery year.

d Dependent variable is the math standardized test score in the year after the lottery. Model is adjusted for the math standardized test score 
in the year before the lottery, US EPA Region, lottery year, and an indicator for having more than one application in a given lottery year.

e Dependent variable is the PM2.5 in the year after the lottery. Model is adjusted for the PM2.5 in the year before the lottery, US EPA Region, lot-
tery year, and an indicator for having more than one application in a given lottery year.

f Independent variables of interest are indicator variables for winners replacing buses with average model year pre-1990, 1990–1999, and 2000 
and newer. Model is adjusted for US EPA Region, lottery year, and an indicator for having more than one application in a given lottery year.

g Quartile thresholds for ridership for the attendance and ED Visits analyses are: Q1: 0.05–3.8%; Q2: 3.8–8.1%; Q3: 8.1–16.2%; Q4: 16.2–
100%. Quartile thresholds for ridership for the Education analyses are: Q1: 0.14–3.6%; Q2: 3.6–8.0%; Q3: 8.0–15.5%; Q4: 15.5–100%.

h For the PM2.5 analysis, the effect modifier of interest is the number of buses requested for replacement. Quartile thresholds are: Q1: 1 bus; 
Q2: 2–3 buses; Q3: 4–5 buses; Q4: 6–20 buses.

i P values are for interaction term.
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that may not be affected by the school buses. To test the sen-
sitivity of our results to this choice, we restricted our models 
to only include children from zip codes that were entirely 
contained within a school district’s boundary. Similarly, our 
primary analysis was restricted to ED visits during the school 
year to target the times that children were most at risk for an 
event due to bus exposures. 

We used several techniques to further evaluate whether 
the exclusion of applications post-randomization may have 
unexpectedly distorted our randomization. First, we inves-
tigated whether the exclusion was related to the selection 
status. Next, we assigned a range of outcomes (i.e., changes 
in attendance, educational performance, ED visits, and PM2.5 
levels before to after the lottery) for all excluded applications 
(n = 134). These assigned values capture the full range of 
changes in our data and therefore reflect extreme scenarios 
for the missing information. We then reran our models with 
these extreme outcome values for the districts served by the 
entrants from excluded applications to generate upper and 
lower bounds for our estimates. Finally, we reran all models 
after using multiple imputation with Rubin’s rules for miss-
ing outcome variables so we could understand the potential 
effects on the results of conducting a complete case analysis.56

To ensure that our findings were robust to our analytic 
choices, we tested the sensitivity of our primary results for 
Hypotheses 1a, 2, and 3 to alternatively modeling the dif-
ference in outcomes before and after the lottery rather than 
controlling for the prior year’s level. We also tested the sen-

sitivity of including further adjustment for free and reduced-
price lunch eligibility as well as for adjusting for the baseline 
levels of the other outcomes (e.g., we adjusted for baseline 
RLA, math, PM2.5, and attendance levels in the respiratory 
ED visit analysis). We further adjusted our primary model 
for differences in the number of schools, number of students, 
percentage of students who are white, and the percentage of 
students eligible for free and reduced-price lunch between 
the before and after years to account for any differences in 
time trends across districts. 

RESULTS

Across all five lottery years, there were a total of 3,153 
applications to the US EPA School Bus Rebate Program (Figure 
2). Of these 3,153 overall and 430 selected applications, 3,019 
(96%) represented school districts that met our inclusion cri-
teria for the full study, 406 of which were randomly selected 
for funding. Compliance with the intervention was very high, 
with 91% of these 406 applicants receiving the funds and 
thus providing proof of purchase of a new school bus and 
scrappage of the old school bus. Information on the school bus 
purchasing behaviors was not available for school districts that 
were selected for funding but did not receive the funding or 
for the school districts that were not selected for funding. Dis-
tricts served by entrants that submitted applications that were 
included in our analysis were larger in terms of the number of 
students and schools, had a higher proportion of students that 
were white, had a lower proportion of students eligible for the 

free and reduced-price lunch pro-
gram, and were less urban than all 
US school districts (Table 3). Within 
the US EPA School Bus Rebate 
Program, districts served by entrants 
with selected applications were 
statistically similar to those that 
were not selected for funding with 
respect to their size, demographic 
makeup, urbanicity, funding and 
number of buses requested, a proxy 
for socioeconomic status (i.e., free 
and reduced-price lunch eligibility), 
attendance rates, and educational 
performance at baseline. ED visits 
(0.048 vs. 0.053 visits/child school 
year) and PM2.5 concentrations (6.9 
vs. 7.2 µg/m3) were slightly lower in 
the districts linked to selected appli-
cations compared with the districts 
linked to unselected applications 
(Table 4). Importantly, we found that 
lottery status was not predictive of 
missingness for any of the outcomes 
considered (Appendix Table A5). 
Further details for each outcome are 
presented separately later.Figure 2. Inclusion criteria for the study population.

 (n = 3,153)

 ( n = 32)

 (n = 3,019)

 ( n = 17)

 ( n = 48)

 ( n = 37)

 Applicants (2012–2017)
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Figure 3. Missingness for each outcome of interest.

 individual districts.
 ( n = 162)

 ( n = 10)

( n = 13)

( n = 18)

( n = 2,816) ( n = 2,841)

( n = 153)

( n = 25)
( n = 521)

( n = 518)

(n = 3,019)

( n = 1,980) ( n = 1,952) ( n = 2,991)

( n = 546)

( n = 521)
( n = 28)

Table 3. Comparison of US EPA School Bus Rebate Program Participantsa to all US School Districtsb

 
Included DERA Applications 

n = 3,019
All US School Districts 

N = 18,893

Characteristic           Mean (SD)
Percent 
Missing         Mean (SD)

Percent 
Missing P value

Schools in district 15 (38) 0 6 (19) 1.6 <0.0001

Students in district 9,134 (27,504) 0.2 2,969 (11,351) 9.4 <0.0001

District students, White (%) 72.5 (25.6) 0.2 64.0 (31.9) 11.4 <0.0001

District students eligible for free lunch (%) 40.3 (20.5) 1.8 44.3 (24.5) 19.8 <0.0001

District students eligible for reduced-price lunch (%) 7.8 (4.5) 6.3 8.2 (6.5) 29.8 0.0001

District land area (square miles) 275 (646) 0.8 279 (1,379) 30.3 0.84

District urbanicity, n (%)

Rural 1,276 (42.3)

0

8,283 (44.0)

0.2 <0.0001
Town 648 (21.5) 3,131 (16.6)

Suburb 798 (26.4) 4,212 (22.4)

City 297 (9.8) 3,221 (17.1)

DERA = Diesel Emissions Reduction Act; SD = standard deviation
a Characteristics for the districts linked to the US EPA School Bus Rebate Program applications represent the time of baseline, which is the 

school year before the new buses were (or would have been, in the case of unselected applications) purchased and therefore differs by which 
year(s) an application was entered in the lottery.

b Characteristics for the US school districts represent the 2015–2016 school year. The districts linked to DERA applications are included in 
this set of all US School Districts.
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Table 4. Baseline Characteristics of School District Entrants by Lottery Statusa

Characteristic
Unselected  

Applications
Selected  

Applications P value

All applications eligible for inclusion n = 2,613 n = 406

Schools in district, n; mean (SD) 15 (40) 13 (30) 0.34

Students in district, n; mean (SD) 9,245 (28,198) 8,422 (22,559) 0.51

District students – White, %; mean (SD) 72.5 (25.7) 72.8 (24.7) 0.80

District students eligible for free lunch, %; mean (SD) 40.4 (20.6) 39.5 (19.7) 0.37

District students eligible for reduced-price lunch, %; mean (SD) 7.8 (4.4) 8.0 (5.1) 0.59

Buses requested for replacement/retrofit, n; mean (SD) 3.6 (2.7) 3.7 (3.1) 0.81

Funding requested for replacement/retrofit, $; mean (SD) 78,483 (58,574) 73,660 (62,121) 0.13

District land area, square miles; mean (SD) 279 (672) 250 (443) 0.25

District urbanicity; n (%)

      Rural 1,094 (41.9) 182 (44.8)

0.44
      Town 571 (21.9) 77 (19.0)

      Suburb 687 (26.3) 111 (27.3)

      City 261 (10.0) 36 (8.9)

Attendance analysis cohort n = 2,433 n = 383  

District attendance rate, %;  mean (SD) 94.90 (1.38) 94.75 (1.39) 0.06

ED visit analysis cohort n = 2,459 n = 382  

District ED visit rate among 5–18-year-olds on Medicaid,  
visits/child school-year; mean (SD) 0.053 (0.057) 0.048 (0.034) 0.02

Education: RLA analysis cohort n = 1,766 n = 214  

District average RLA standardized test score, SD; mean (SD) 0.068 (0.292) 0.064 (0.306) 0.87

Education: math analysis cohort n = 1,743 n = 209  

District average math standardized test score, SD; mean (SD) 0.058 (0.338) 0.040 (0.352) 0.47

PM2.5 analysis cohort n = 2,590 n = 401  

District average PM2.5, µg/m3; mean (SD) 7.15 (1.49) 6.92 (1.30) 0.002

a Baseline is the school year before the new buses were (or would have been, in the case of unselected applications) purchased and therefore 
differs by which year(s) an application was entered in the lottery.
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*Confidence intervals for the replacement of all pre-2000 model-year buses 
do not equal the sum of the lower and upper confidence intervals for the 
pre-1990 and 1990s model-year bus estimates because confidence intervals 
are not additive.

ATTENDANCE

District-level attendance data were not available for 
applications linked to districts in Pennsylvania (n = 66) for 
any years; Alabama (n = 18), Arizona (n = 10), and Montana 
(n = 11) for the 2015–2016 through 2018–2019 school years; 
New Jersey (n = 43) for 2012–2013 and 2013–2014; and North 
Dakota (n = 14) for 2012–2013. An additional n = 10 appli-
cation observations were excluded from the analysis due to 
missing attendance data for some individual districts or to 
methodological changes in the reporting of the attendance data 
across the before and after school years (n = 13). Ultimately, 
we were able to evaluate associations using attendance data 
from 2,816 (93%) of the eligible US EPA applications (Figure 
3), of which 383 were selected for funding (Table 4).

Nationwide, we found that districts linked to applications 
selected for the School Bus Rebate funding had suggestively, 
although not statistically different, higher attendance rates in 
the year after the lottery compared with districts linked to 
applications not selected for funding (0.06 pp; 95% CI: –0.01 
to 0.13) (Table 2). Funding had the largest effects for districts 
that replaced older buses. For example, districts replacing 
a pre-1990 model year bus had the largest improvements in 
attendance at 0.45 pp (0.26 to 0.65), translating to 45 additional 
students attending school each day in an average size district 
of 10,000 students. Districts that replaced 1990–1999 model 
year buses had a 0.10 pp improvement in attendance (–0.03 to 
0.23) whereas there was little improvement for districts that 
replaced model year 2000 and newer buses (–0.03 pp; –0.16 
to 0.09). The estimates of the effects of being selected in the 
lottery were similarly larger for districts with higher levels of 
estimated ridership on the buses requested for replacement, 
with estimates reaching as high as 0.14 pp (–0.05 to 0.32) for 
the highest estimated ridership group, translating to 14 addi-
tional students attending school each day in an average size 
district of 10,000 students, although these results could not 
be distinguished from no association. While present in the 
expected dose–response fashion, these groups could not be 
statistically distinguished from one another. There was no evi-
dence of effect modification by urbanicity or levels of free lunch 
eligibility, but there was some indication of stronger effects 
among districts with fewer schools and students (Table 5). The 
results were robust across multiple alternative specifications of 
our model in sensitivity analyses, including using the change 
in attendance rate as the dependent variable and adjusting for 
covariates such as free and reduced-price lunch eligibility, 
changes in district characteristics after compared with before the 
lottery, and for other outcomes at baseline (Table 6). Although 
the overall results were weakened after using multiple imputa-
tion to address missing data, the model year results remained 
robust across all analyses. The results were also robust to our 
evaluations of potential selection bias (Appendix Table A4).

Based on our main results, we estimated that the upgrade of 
older buses through the US EPA’s School Bus Rebate Funding 

Programs between 2012 and 2017 resulted in 351,093 addi-
tional student days of attendance per year (95% CI: –70,678 to 
772,865). Notably, this is likely an underestimate of the total 
effect because it does not incorporate any sustained effects of 
the funding over time. Furthermore, extrapolation of our data 
suggests that funding to replace all pre-2000 model year buses 
in school districts nationwide could lead to 1.3 million addi-
tional student days of attendance each year (95% CI: 247,443 
to 2,406,511); approximately 400,000 from the replacement 
of pre-1990 buses (408,729; 95% CI: 232,103 to 585,446) and 
approximately 900,000 from the replacement of 1990s model 
year buses (918,311; 95% CI: –236,343 to 2,072,964).*

RESPIRATORY-RELATED EMERGENCY DEPARTMENT 
VISITS

As shown in Figure 3, we were able to evaluate associations 
using ED visit rate data from n = 2,841 (94%) of the eligible 
US EPA applications after excluding 25 applications linked 
to school districts with missing school-district geographies 
(which was needed to link zip codes to school districts) and 
153 applications linked to districts without child-aged Medic-
aid enrollees in either the before or after year of the lotteries. 
Of these applications, 382 were selected for funding (Table 4).

Counter to our hypothesis, we found that school bus 
replacements were associated with an overall increase in 
ED visit rates for respiratory causes among 5- to 18-year-old 
Medicaid enrollees, although these associations were impre-
cise and generally could not be statistically distinguished 
from no association (Table 2). Notably, however, there was 
no logical dose–response relationship observed by replaced 
model year (Table 2), and the results were sensitive to dif-
ferent modeling strategies and our evaluations of potential 
selection bias (Table 7, Appendix Table A4). For example, the 
overall results using imputed data to account for missingness 
suggested a reduction in ED visits among districts linked to 
applications selected for funding as compared to districts 
linked to applications not selected for funding, although the 
estimate was imprecise (–11.3%; 95% CI: –29.0% to 10.8%). 

In our secondary analyses, we found little evidence that 
ED visits mediated the relationship between being selected 
for the US EPA school bus upgrade funding and attendance 
rates (–7.4%; 95% CI: –3,207% to 4%) (Table 8). 

EDUCATIONAL PERFORMANCE

The SEDA data had a larger fraction of missing information 
compared with the other outcomes partially because data for 
the 2018–2019 school year were unavailable at the time of 
authoring this report. In addition, SEDA excludes test scores 
due to incomplete student participation (<95% in a subject for 
a given grade in a given year), state reporting to EDFacts, or 
differences in test administration within state-subject-grade-
year, which can happen if districts were allowed to administer 
locally selected assessments (see Table 4 in Fahle et al. for a 
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Table 5. Effect Modification Results for the Effects of School Bus Replacements on Attendance, Respiratory ED Visits, Educational 
Performance, and Ambient PM2.5 Concentrationsa,b

Attendance (pp) ED Visits (% change) Education: RLA (SD) Education: Math (SD) PM2.5 (µg/m3)

Model
Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Overall effect of replacement 0.06 –0.01, 0.13 3.5 –2.3, 9.7 0.005 –0.008, 0.017 –0.001 –0.011, 0.010 –0.04 –0.11, 0.04

Effect of replacement by urbanicity

Rural 0.02 –0.10, 0.14 7.3 –5.9, 22.4 –0.006 –0.028, 0.016 –0.014 –0.032, 0.005 –0.004 –0.08, 0.08

Town 0.14 –0.01, 0.28 –8.8 –26.6, 13.3 0.001 –0.021, 0.022 0.015 –0.017, 0.047 0.02 –0.12, 0.16

Suburb 0.07 –0.09, 0.23 2.6 –4.8, 10.5 0.025 0.007, 0.044 0.011 –0.009, 0.031 –0.11 –0.25, 0.03

City 0.01 –0.38, 0.40 9.1 –11.5, 34.5 –0.003 –0.025, 0.018 –0.008 –0.034, 0.018 –0.06 –0.23, 0.12

P value: 0.61 P value: 0.30 P value: 0.22 P value: 0.26 P value: 0.41

Effect of replacement by district free lunch eligibility

Low eligibility 0.09 –0.02, 0.20 4.7 –7.4, 18.3 0.008 –0.009, 0.025 0.009 –0.002, 0.020 0.03 –0.07, 0.13

High eligibility 0.01 –0.08, 0.11 3.4 –3.1, 10.2 0.0003 –0.018, 0.018 –0.009 –0.025, 0.006 –0.11 –0.21, –0.002

P value: 0.35 P value: 0.84 P value: 0.49 P value: 0.07 P value: 0.09

Effect of replacement by number of schools in a district

Low number of schools 0.11 0.01, 0.21 –2.3 –12.6, 9.2 0.001 –0.018, 0.020 -0.005 –0.020, 0.011 0.04 –0.06, 0.13

High number of schools –0.005 –0.09, 0.08 4.1 –1.9, 10.6 0.008 –0.006, 0.022 0.003 –0.009, 0.015 –0.12 –0.24, 0.002

P value: 0.08 P value: 0.33 P value: 0.54 P value: 0.44 P value: 0.06

Effect of replacement by number of students in a district

Low number of students 0.10 0.004, 0.19 –4.5 –14.9, 7.3 -0.002 –0.021, 0.018 –0.004 –0.021, 0.013 0.03 –0.06, 0.11

High number of students 0.01 –0.07, 0.10 4.3 –1.8, 10.7 0.010 –0.003, 0.023 0.002 –0.009, 0.014 –0.10 –0.22, 0.01

P value: 0.12 P value: 0.21 P value: 0.28 P value: 0.56 P value: 0.08

Effect of replacement by fraction of district students who are White

Low percentage White students 0.06 –0.05, 0.16 3.6 –2.8, 10.3 0.013 –0.001, 0.027 0.003 –0.011, 0.016 –0.09 –0.20, 0.01

High percentage White students 0.07 –0.02, 0.16 2.8 –8.4, 15.3 –0.004 –0.026, 0.017 –0.004 –0.022, 0.014 0.02 –0.07, 0.11

P value: 0.83             P value: 0.91       P value: 0.19     P value: 0.59          P value: 0.12

Effect of replacement by fraction of children on Medicaid

Low Medicaid eligibility –3.5 –19.9, 16.4

High Medicaid eligibility 3.9 –2.0, 10.0

P value: 0.47

a For the attendance, education, and PM2.5 analyses, the dependent variable is the outcome in the year after the lottery. Models are adjusted for the outcome 
in the year before the lottery, US EPA Region, lottery year, and an indicator for having more than one application in a given lottery year. For the ED visit 
analysis, the dependent variable is the number of respiratory-related ED visits among 5- to 18-year-old Medicaid beneficiaries in the year after the lottery. 
Model is adjusted for the ED visit rate for respiratory causes in the year before the lottery, US EPA Region, lottery year, and an indicator for having more 
than one application in a given lottery year.

b P values are for interaction term.
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Overall effect of  
replacement

0.02 –0.07, 0.12

Effect of replacement for different model years of replaced busesg

pre-1990 0.47   0.05, 0.90

1990–1999 0.09 –0.05, 0.24

2000 and newer –0.02 –0.14, 0.11

Number of observations                 3,010

Table 6. Effects of School Bus Replacements on Attendance in Secondary and Sensitivity Analyses

Primary Modela Change in Outcomeb

Adjusted for Free 
and Reduced-Price  
Lunch Eligibilityc

Adjusted for 
Changes in 

School District 
Characteristicsd

Adjusted for 
Baseline levels of 
Other Outcome 

Measurese

Model
Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Overall effect of  
replacement

0.06 –0.01, 0.13 0.08 –0.01, 0.17 0.07 –0.01, 0.14 0.07 0.00, 0.15 0.03 –0.04, 0.11

Effect of replacement for different model years of replaced busesg

pre-1990 0.45 0.26, 0.65 0.41 0.17, 0.66 0.44 0.17, 0.71 0.42 0.20, 0.64 0.48 0.12, 0.83

1990–1999 0.10 –0.03, 0.23 0.14 –0.01, 0.28 0.14 0.06, 0.23 0.15 0.06, 0.24 0.01 –0.11, 0.13

2000 and newer –0.03 –0.16, 0.09 –0.02 –0.17, 0.12 –0.03 –0.15, 0.10 –0.03 –0.15, 0.09 –0.09 –0.25, 0.06

Number of observations 2,816 2,816 2,650 2,608 1,966

    

a Dependent variable is the attendance in the year after the lottery. Model is adjusted for the attendance in the year before the lottery, US EPA 
Region, lottery year, and an indicator for having more than one application in a given lottery year.

b Dependent variable is the difference in the attendance rate in the years before and after the lottery. Model is adjusted for US EPA Region, lot-
tery year, and an indicator for having more than one application in a given lottery year.

c Primary model, additionally adjusted for district free and reduced-price lunch eligibility rates.
d Primary model, additionally adjusted for the difference in the district number of schools, number of students, percentage of students that are 

White, and the free and reduced-price lunch eligibility rates in the years before and after the lottery.
e Primary model, additionally adjusted for baseline levels of district average PM2.5, RLA and math standardized scores, and respiratory-related 

ED visit rates among 5- to 18-year-old Medicaid beneficiaries.
f Primary model including observations with previously missing outcome measures newly estimated with multiple imputation methods.
g Independent variables of interest are indicator variables for selected districts replacing buses with average model year pre-1990, 1990–1999, 

and 2000 and newer.

     Multiple Imputationf

Model
Parameter 
Estimate 95% CI
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Table 7. Effects of School Bus Replacements on Respiratory ED Visits in Secondary and Sensitivity Analyses

Primary Modela

Adjusted for Free and 
Reduced-Price Lunch 

Eligibilityb

Adjusted for Changes 
in School District 
Characteristicsc

Adjusted for Baseline 
Levels of Other 

Outcome Measuresd

Only Within Districts 
Fully Within School 
District Boundariese

Model
Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Overall effect of  
replacement

3.5 –2.3, 9.7 3.5 –2.5, 9.9 1.7 –4.7, 8.6 8.5 2.0, 15.5 7.2 –8.6, 25.8

Effect of replacement for different model years of replaced busesg

pre-1990 4.9 –5.0, 15.8 1.6 –8.1, 12.3 1.5 –8.3, 12.5 9.8 0.0, 20.5 5.1 –11.1, 24.3

1990–1999 –8.8 –21.1, 5.5 –10.7 –23.9, 4.8 –12.6 –26.3, 3.8 –2.5 –17.5, 15.2 –10.6 –30.1, 14.4

2000 and newer 9.2 0.8, 18.2 10.1 0.8, 20.4 8.1 –1.7, 18.8 13.1 2.2, 25.1 12.2 –10.4, 40.4

Number of observations 2,841 2,669 2,625 1,970 870

Multiple Imputationf

Model
Parameter 
Estimate 95% CI

Overall effect of  
replacement –11.3 –29.0, 10.8

Effect of replacement for different model years of replaced busesg

pre-1990 4.2 –11.7, 22.9

1990–1999 –12.7 -–27.4, 5.0

2000 and newer 3.9 –21.9, 38.2

Number of observations               3,019

a Dependent variable is the number of respiratory-related ED visits among 5- to 18-year-old Medicaid beneficiaries in the year after the lottery. Model is 
adjusted for the ED visit rate for respiratory causes in the year before the lottery, US EPA Region, lottery year, and an indicator for having more than 
one application in a given lottery year.

b Primary model, additionally adjusted for district free and reduced-price lunch eligibility rates.
c Primary model, additionally adjusted for the difference in the district number of schools, number of students, percentage of students that are White, 

and the free and reduced-price lunch eligibility rates in the years before and after the lottery.
d Primary model, additionally adjusted for baseline levels of district average PM2.5, RLA and math standardized scores, and attendance.
e Model only includes districts that are completely contained within the boundary of a given school district.
f Primary model including observations with previously missing outcome measures newly estimated with multiple imputation methods.
g Independent variables of interest are indicator variables for selected districts replacing buses with average model year pre-1990, 1990–1999, and 2000 

and newer.
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Table 8. Results from Mediation Analyses of the Effect of the US EPA School Bus Rebate Program on Education and 
Attendance Outcomes

Education: RLA  
(% change)

Education: Math  
(% change) Attendance (pp)

Model
Parameter 
Estimatea 95% CIb

Parameter 
Estimatea 95% CIb

Parameter 
Estimatec 95% CIb

Total effect 0.007 –0.007, 0.020 –0.001 –0.015, 0.013 0.05 –0.03, 0.12

Controlled direct effect 0.007 –0.007, 0.020 –0.001 –0.016, 0.012 0.05 –0.03, 0.12

Natural direct effect 0.007 –0.007, 0.020 –0.001 –0.016, 0.012 0.05 –0.03, 0.12

Natural indirect effect 0.0002 –0.0004, 0.002 0.0001 –0.001, 0.001 –0.004 –0.02, 0.002

Percentage mediated 2.7 –7.5, 222.4 –16.9 –3972.5, -2.4 –7.4 –3207.1, 4.0

a The dependent variable is the standardized test score in the year after the lottery. The mediator is the attendance rate in the year after the lottery. Model is adjusted 
for the standardized test score in the year before the lottery, the attendance rate in the year before the lottery, US EPA Region, lottery year, and an indicator for 
having more than one application in a given lottery year.

b Bootstrap bias corrected 95% confidence limits.

c The dependent variable is the attendance rate in the year after the lottery. The mediator is the ED visit rate in the year after the lottery. Model is adjusted for the 
attendance rate in the year before the lottery, the ED visit rate in the year before the lottery, US EPA Region, lottery year, and an indicator for having more than 
one application in a given lottery year.

list of state/year/subject exclusions).45 As a result, observations 
for n = 518 and n = 546 applications were dropped in our 
RLA and math analyses, respectively, leaving us with RLA 
data from 1,980 (66%) and math data from 1,952 (65%) of all 
eligible applications. Note that the portions of data relative to 
the 2012 and 2014–2016 lottery years when SEDA data were 
available were 79% and 78%, respectively (Figure 3). Among 
the school districts linked to applications in this analysis, 214 
applications in the RLA analyses and 209 applications in the 
math analyses were selected for funding (Table 4).

When evaluating the effects of US EPA’s School Bus Rebate 
Program funding, we found that districts linked to applications 
selected for funding had, on average, 0.005 SD higher average 
RLA test scores (95% CI: –0.008 to 0.017) and –0.001 SD lower 
average math test scores (–0.011 to 0.010) in the year after the 
lottery compared with districts linked to applications that were 
not selected for funding (Table 2). While these district-level 
results were small and not statistically distinguishable from the 
null, we observed large effects among districts that replaced the 
oldest buses. Specifically, districts replacing a pre-1990 model 
year bus had the largest improvements in RLA scores at 0.062 
SD (0.050 to 0.074) and in math scores at 0.025 SD (0.011 to 
0.039). For context, these results are equivalent in magnitude 
to average district income increasing by 10% and 4% for the 
RLA and math subjects, respectively.*

In contrast, there was little evidence of an improvement in 
RLA or math test scores for districts that replaced 1990–1999 
(RLA: –0.003 SD; –0.020 to 0.014; math: –0.012 SD; –0.032 to 
0.009) or 2000 and newer (RLA: 0.003 SD; –0.011 to 0.018; 
math: 0.001 SD; –0.014 to 0.016) model year buses. There was 
also suggestive evidence that the effects of lottery selection on 
RLA — but not math — scores were larger for districts with the 

highest levels of estimated ridership on the buses requested 
for replacement, with effects of 0.024 SD (–0.010 to 0.057), 
but this was not supported by a dose–response relationship 
across all ridership categories, and the ridership groups could 
not be statistically distinguished from one another. There was 
little evidence of effect modification by urbanicity, SES, or 
school-district size (Table 5). 

Our primary results were robust to using the change in stan-
dardized test scores before and after the lottery as the depen-
dent variable. They were also robust to adjustments for free 
and reduced-price lunch eligibility, changes in school-district 
characteristics compared with before the lottery, and baseline 
values of other outcomes. These results were also robust to the 
inclusion of districts linked to excluded applications, even 
with extreme assumed values of the outcome and inclusion 
of applications linked to districts with missing data through 
the use of multiple imputation (Table 9, Appendix Table 
A4). In our secondary analysis, we found little evidence that 
attendance mediated the relationship between US EPA school 
bus upgrade funding selection and educational performance. 
Specifically, we observed that only 2.7% (95% CI: –7.5% to 
222%) of the total effect of the US EPA’s clean bus funding 
on RLA test scores was mediated by attendance (Table 8). 
The result for math test scores was even less supportive of a 
mediative effect of attendance (–16.9%; –3,973% to –2.4%).

AIR QUALITY

We were able to link ambient PM2.5 concentrations to 2,991 
(99%) of all eligible US EPA applications (Figure 3). Of these, 
401 applications were selected for funding (Table 4). After 
adjusting for baseline differences in PM2.5, region, and lottery 

*Results determined from replacing the lottery indicator with a measure of 
district average income from the SEDA dataset.
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Table 9. Effects of School Bus Replacements on Educational Performance in Secondary and Sensitivity Analyses

Primary Modela Change in Outcomeb

Adjusted for Free and Reduced-Price 
Lunch Eligibilityc

Model
Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

RLA

Overall effect of replacement 0.005 –0.008, 0.017 0.005 –0.008, 0.019 0.005 –0.009, 0.018

Effect of replacement for different model years of replaced busesg

pre-1990 0.062 0.050, 0.074 0.068 0.055, 0.082 0.066 0.054, 0.078
1990–1999 –0.003 –0.020, 0.014 –0.003 –0.019, 0.013 –0.001 –0.018, 0.016
2000 and newer 0.003 –0.011, 0.018 0.003 –0.013, 0.019 0.003 –0.012, 0.019

Number of observations 1,980 1,980 1,883

Math

Overall effect of replacement –0.001 –0.011, 0.010 –0.001 –0.012, 0.010 0.001 –0.010, 0.012

Effect of replacement for different model years of replaced busesg

pre-1990 0.025 0.011, 0.039 0.028 0.013, 0.042 0.042 0.027, 0.058

1990–1999 –0.012 –0.032, 0.009 –0.013 –0.032, 0.007 –0.005 –0.025, 0.014

2000 and newer 0.001 –0.014, 0.016 0.001 –0.015, 0.016 –0.001 –0.017, 0.016

Number of observations 1,952 1,952 1,853

Adjusted for Changes 
in School District 
Characteristics

Adjusted for Baseline Levels of 
Other Outcome Measuresd Multiple Imputation

Model
Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate     95% CI

RLA

Overall effect of replacement 0.004 –0.010, 0.018 0.006 –0.007, 0.019 0.001 –0.011, 0.013

Effect of replacement for different model years of replaced busesg

pre-1990 0.066 0.054, 0.079 0.048 0.032, 0.063 0.057 0.006, 0.108

1990–1999 –0.005 –0.023, 0.013 –0.001 –0.017, 0.015 –0.003 –0.024, 0.017

2000 and newer 0.002 –0.014, 0.018 0.005 –0.011, 0.020 0.000 –0.015, 0.016

Number of observations 1,853 1,811 3,019

Math

Overall effect of replacement –0.001 –0.012, 0.011 0.000 –0.011, 0.011 0.008 –0.006, 0.022

Effect of replacement for different model years of replaced busesg

pre-1990 0.039 0.023, 0.054 0.022 0.008, 0.037 0.033 –0.022, 0.087

1990–1999 –0.010 –0.030, 0.011 –0.011 –0.031, 0.009 0.000 –0.021, 0.020

2000 and newer –0.002 –0.020, 0.015 0.000 –0.015, 0.015 0.012 –0.005, 0.029

Number of observations 1,823 1,776 3,019

a Dependent variable is the standardized test score in the year after the lottery. Model is adjusted for the standardized test score in the year 
before the lottery, US EPA Region, lottery year, and an indicator for having more than one application in a given lottery year.

b Dependent variable is the difference in the standardized test score in the years before and after the lottery. Model is adjusted for US EPA 
Region, lottery year, and an indicator for having more than one application in a given lottery year.

c Primary model, additionally adjusted for district free and reduced-priced lunch eligibility rates.
d Primary model, additionally adjusted for the difference in the district number of schools, number of students, percentage of students that are 

White, and the free and reduced-priced lunch eligibility rates in the years before and after the lottery.
e Primary model, additionally adjusted for baseline levels of district average PM2.5, attendance rate, and respiratory-related ED visit rates among 

5- to 18-year-old Medicaid beneficiaries.
f Primary model including observations with previously missing outcome measures newly estimated with multiple imputation methods.
g Independent variables of interest are indicator variables for selected districts replacing buses with average model year pre-1990, 1990–1999, 

and 2000 and newer.
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year, we found that districts linked to applications selected for 
the School Bus Rebate funding had, on average, 0.04 µg/m3 lower 
PM2.5 levels (95% CI: –0.11 to 0.04) in the year after the lottery 
compared with districts linked to applications that were not 
selected for funding (Table 2). We also found larger PM2.5 
reductions among those districts replacing older buses and 
among districts that requested the most replacement buses, 
with evidence of clear dose responses for both, although 
these groups could not be statistically distinguished from one 
another. Reductions also appeared to be larger among districts 
with the highest fraction of students on reduced-price or free 
lunch (Table 5). Our results were largely robust to using the 
change in PM2.5 concentration as the dependent variable as 
well as to adjustment for changes in district characteristics 
after compared with before the lottery and to differences 
between districts at baseline. Our findings were similarly 
robust to assuming extreme values for the districts linked 
to excluded applications and to accounting for missingness 
using multiple imputation (Table 10, Appendix Table A4).

DISCUSSION AND CONCLUSIONS

MAIN FINDINGS

In this national analysis of the effects of the US EPA’s 
School Bus Rebate Program, we found evidence that replacing 
the oldest school buses with newer, lower emission buses 
was associated with increases in school-district attendance 
rates, improvements in educational achievement for their 
students with respect to RLA and math, and lower ambient 
PM2.5 concentrations in the communities surrounding the 
school districts. Little evidence was found for the benefits of 
replacing newer buses, and there was no consistent evidence 
that clean bus funding reduced respiratory-related ED visit 
rates overall among 5–18-year-olds on Medicaid, although 
these models were sensitive to model specification.

Our findings are noteworthy as this is, to our knowledge, 
the first evaluation to assess the effectiveness of the national 
US EPA School Bus Rebate Program. Additionally, the ran-
domized allocation of funding by the US EPA provides strong 
support for a causal interpretation of the effects of school dis-
tricts switching to cleaner, lower-emission buses. This work 
demonstrates that the program had positively affected student 
attendance, educational achievement, and air quality across 
the nation, especially when the oldest buses were replaced.

The beneficial effects of replacing buses of the oldest model 
years found consistently throughout this research, are both 
important and unsurprising given the increasing strictness of 
emissions standards for buses in the United States over time. 
For context, US EPA standards for buses required an approx-
imate six-fold reduction in PM emissions for 1991–1997 
model-year buses compared with 1990 and older model-year 
buses. There were smaller reductions in emissions required 
by the regulatory standards in 1998, 2004, and 2007.57 
Although this indicates that the overall effects of this program 
may decline over time if there are no further improvements to 

cleaner bus technologies, the value of this program is likely to 
continue for many years, given that the average school bus is 
on the road for 16 years before being decommissioned.22 For 
example, in the 2020s we estimate that approximately 1% of 
the US fleet (3,500 buses) were pre-1990 buses while approxi-
mately 10% of the fleet (35,000 buses) were 1990–1999 model 
year buses.23,24,58 This translates to over 250,000 students rid-
ing pre-1990 model year buses and almost 3 million students 
riding a pre-2000 model year bus to school.24 Given that the 
benefits were predominantly observed for the replacement of 
the oldest buses, it may be that the benefits of this program 
will become smaller over time, and that the sustained effects 
of school bus replacements should be ascertained after the 
fleet has fully transitioned to newer buses. 

Overall, this work suggests large measurable population 
gains with the replacement of older buses. For example, we 
estimate that replacement of all pre-1990 model year buses 
across the United States could lead to over 400,000 addi-
tional student days of attendance each year (408,729; 95% 
CI: 232,103 to 585,446), while replacement of 1990s model 
year buses could result in over 900,000 additional student 
days of attendance each year (918,311; 95% CI: –236,343 
to 2,072,964). Such attendance benefits are important with 
respect to avoided caregiver costs for younger children and 
lost learning for middle school and high school students. 
Using the US EPA’s estimated value of a lost day of school of 
$1,000,55 we estimate that replacing all buses in the United 
States that were manufactured before 1990 could lead to $400 
million in economic benefits per year; replacing all of the 
buses manufactured before 2000 could lead to $1.3 billion in 
economic benefits per year. Given that we also estimated that 
there were over 350,000 additional student days of attendance 
per year in the districts linked to applications selected in the 
lottery (351,093; 95% CI: –70,678 to 772,865), this implies 
that the total investment of $27 million by the US EPA for the 
2012–2017 lotteries likely resulted in $350 million of benefits 
per year due to reduced absenteeism alone. At an estimated 
cost of around $78 per additional day of student attendance, 
this represents a fraction of the cost for other absenteeism 
interventions, such as mentorship programs that cost approx-
imately $500 per additional day of student attendance and 
improved student attendance by 0.4 pp.41 The US EPA pro-
gram, however, is more expensive than a simpler intervention 
that shared student absenteeism information with parents, 
costing only $6 per additional day of student attendance and 
improving attendance by 0.3 pp.42 On the other hand, given 
costs of up to $300,000/bus,21 the pre-1990 buses could be 
replaced by an investment of approximately $1 billion, which 
reflects about one fifth of the budget already allocated to the 
US EPA’s new Clean School Bus Program over the next 5 
years to replace existing school buses with zero-emission and 
low-emission models.59 Importantly, it is likely that districts 
with the oldest buses are those with the least resources to 
upgrade buses without the US EPA funds.

When considering educational performance, we observed 
improvements in test scores when the oldest school buses 
were replaced. The magnitude of the effect of US EPA fund-
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Table 10. Effects of School Bus Replacements on Ambient PM2.5 Concentrations in Secondary and Sensitivity Analyses

Primary Modela Change in Outcomeb

Adjusted for Free and Reduced-Priced 
Lunch Eligibilityc

Model
Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Overall effect of replacement –0.04 –0.11, 0.04 –0.06 –0.14, 0.02 –0.02 -0.09, 0.05

Effect of replacement for different model years of replaced busesg

pre-1990 –0.95 –1.45, –0.45 –1.11 –1.64, –0.59 –0.91 –1.57, –0.24

1990–1999 –0.04 –0.15, 0.08 –0.04 –0.16, 0.07 –0.02 –0.14, 0.10

2000 and newer –0.01 –0.08, 0.06 –0.03 –0.11, 0.04 –0.02 –0.09, 0.05

Number of observations 2,991 2,991 2,810

Adjusted for Changes 
in School District 
Characteristicsd

Adjusted for Baseline 
Levels of Other Outcome 

Measurese Multiple Imputationf

Model
Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Parameter 
Estimate 95% CI

Overall effect of replacement –0.03 –0.11, 0.04 –0.03 –0.13, 0.06 –0.04 –0.11, 0.03

Effect of replacement for different model years of replaced busesg

pre-1990 –0.90 –1.54, –0.27 –1.24 –1.45, –1.04 –0.95 –1.28, –0.61

1990–1999 –0.02 –0.14, 0.10 0.08 –0.04, 0.20 –0.04 –0.15, 0.07

2000 and newer –0.02 –0.09, 0.04 –0.08 –0.18, 0.03 –0.01 –0.10, 0.09

Number of observations 2,763 1,981 3,019

a Dependent variable is the PM2.5 in the year after the lottery. Model is adjusted for the PM2.5 in the year before the lottery, US EPA Region, lot-
tery year, and an indicator for having more than one application in a given lottery year.

b Dependent variable is the difference in PM2.5 in the years before and after the lottery. Model is adjusted for US EPA Region, lottery year, and 
an indicator for having more than one application in a given lottery year.

c Primary model, additionally adjusted for district free and reduced-priced lunch eligibility rates.

d Primary model, additionally adjusted for the difference in the district number of schools, number of students, percentage of students that are 
White, and the free and reduced-price lunch eligibility rates in the years before and after the lottery.

e Primary model, additionally adjusted for baseline levels of district average attendance rate, RLA and math standardized scores, and respira-
tory-related ED visit rates among 5- to 18-year-old Medicaid beneficiaries.

f Primary model including observations with previously missing outcome measures newly estimated with multiple imputation methods.

g Independent variables of interest are indicator variables for selected districts replacing buses with average model year pre-1990, 1990–1999, 
and 2000 and newer.
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ing on RLA test scores was roughly equivalent to 25%–30% 
of the observed effect on test scores for a reduction in class 
size of 7–10 students.60,61 These findings are plausible, given 
evidence that air pollution can directly affect cognitive per-
formance in children.62-65 They are also consistent with our 
attendance results because school attendance has repeatedly 
been associated with student achievement.38,66-70 Interestingly, 
however, we did not find evidence that our educational 
performance results were mediated by attendance. This lack 
of an observed mediative effect of attendance on education 
in our analysis might be a result of the fact that, because of 
issues with power, we evaluated mediation on the whole pop-
ulation of replacements as opposed to only the oldest buses. 
The coarse resolution of both datasets may have also limited 
our ability to detect mediation statistically. Additionally, 
there is some mismatch between the two sources because 
the attendance data represents the experience of all enrolled 
students (i.e., kindergarten through 12th grade), while the 
educational performance data represents only 3rd- through 
8th-grade students. If the effects of funding on attendance 
were distributed unevenly across age groups, it would be 
unsurprising that K–12 attendance rates did not mediate the 
relationship between clean bus funding and 3rd- through 
8th-grade test scores.

Beyond the benefits of bus replacement observed for 
children attending participating schools, there was some evi-
dence of broader effects on air pollution levels in the commu-
nity. Specifically, we observed a 1-µg/m3 reduction in PM2.5 
concentrations in districts replacing the oldest buses. Given 
a population-weighted PM2.5 concentration of 8 µg/m3 for the 
United States during our period of study,71 this translates to 
a sizeable reduction. Although surprising in magnitude, the 
results were robust across many different specifications of the 
model and under numerous sensitivity analyses, thus raising 
our confidence in the results. 

Interestingly, despite the large apparent changes to ambient 
air in the community, we saw no evidence that being selected 
for Clean School Bus Funding was associated with reduced 
respiratory-related ED visit rates among 5–18-year-olds on 
Medicaid, even for districts replacing the oldest buses. We 
even saw the suggestion of increases in respiratory-related ED 
visits for districts linked to applications that were awarded 
funding. However, these results were imprecise, sensitive to 
model specification (especially correction for missing data), 
and did not have the same consistent dose–response function 
as observed for other outcomes, perhaps supporting a null 
finding. A null finding would be reasonable if diesel exhaust 
from school buses resulted in more minor disruptions to 
health that cause children to miss school rather than to need 
an ED visit. Bias is another possible explanation for these 
null and inconsistent findings for the ED visits. First, it is 
possible that measurement error may have played an import-
ant role in our analysis because the Medicaid data were of 
substantially lower quality than the attendance and educa-
tional performance data, which are specific to the children 
attending the schools in the districts linked to the US EPA 

applications. The Medicaid data only represent the subset 
of children eligible for this government assistance program 
and can include children who attend private schools or have 
other schooling arrangements. While we would expect these 
sources of misclassification to bias our findings toward the 
null, our sensitivity analysis that was limited to the zip codes 
completely contained within school district boundaries did 
not indicate a stronger reduction in ED visits in districts 
linked to selected applications. Finally, we found evidence 
that these findings may have been magnified because of selec-
tion bias resulting from the post-randomization exclusion of 
applications linked to missing school districts and residual 
confounding by changes in demographics in the years before 
and after the lottery. This differs from the other outcomes 
that were largely unaffected by further control for changes in 
demographics over time and accounting for missingness by 
multiple imputation. 

COMPARISON TO PAST RESEARCH

To put our results in context with our earlier research, 
we compared the current study’s findings for attendance to 
those of our previous observational panel study in the Wash-
ington State Puget Sound area, which evaluated the effects 
of school bus retrofits on school attendance of individual 
children.17 Similar to the current study, in our earlier work 
we found that students experienced a reduced risk of absen-
teeism in the previous month when they were riding newer, 
lower-emission buses compared with older, higher-emission 
buses. Austin and colleagues35 used an ecological study of 
observational data from Georgia to investigate school bus 
retrofits on absenteeism; they reported an estimated 0.03-pp 
increase in attendance for districts with the average level of 
fleet retrofits (19%).

Our education findings are also similar to — but less pre-
cise than — the Austin et al. investigation with respect to the 
educational effects of a school bus retrofit program.35 In that 
work, the researchers reported that a district that retrofitted 
19% of its fleet (the average percentage retrofitted across its 
sample) had an average increase in English language arts and 
math scores of 0.017 (95% CI: 0.0057 to 0.028) and 0.009 
(–0.0019 to 0.02) SDs, respectively.35 A second unpublished 
study assessed the effects of a separate US EPA competitive 
grant program that also funded school bus retrofits and 
replacements37 and reported improvements in standardized 
testing similar to those of Austin et al.35 These improvements 
are approximately three times smaller than the associations 
that we observed for districts that replaced pre-1990 mod-
el-year buses, but they are larger than our overall effects.

Our health results differ from the existing work on this 
topic. For example, one study used an ecological differ-
ence-in-difference design to assess the effects of school bus 
retrofits in Washington State on health.36 In this observa-
tional study, Beatty and Shimshack36 found that school bus 
retrofits were associated with reduced community-wide 
hospitalizations for bronchitis, asthma, and pneumonia 
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among children with chronic conditions. This restriction to 
children with a chronic health condition may have increased 
their ability to see an effect, whereas our results may have 
been diluted by including all children in our study sample. A 
second observational study in Georgia showed that children 
in school districts that retrofitted their school buses had larger 
increases in aerobic capacity on state-required physical activ-
ity tests,35 and our work in Washington State17 found signifi-
cant improvements in inflammation of individual riders due 
to bus retrofits. These studies perhaps were better powered to 
detect associations if these subclinical measures were more 
sensitive to changes with diesel exposures than ED visits.

Finally, in terms of air quality, one unpublished study 
looked at the national-level effects of a separate US EPA com-
petitive grant program, which also funded school bus retrofits 
and replacements.37 The author observed small improvements 
in PM2.5 concentrations after the retrofits. Specifically, in dis-
tricts that retrofitted the average number of school buses (n = 
73), PM2.5 concentrations decreased by 0.05 µg/m3 as a result 
of the retrofit program. The smaller magnitude of these results 
compared with ours may be due to the study looking only 
at bus retrofits, whereas ours almost exclusively evaluated 
school bus replacements.

LIMITATIONS

One key limitation of this work is that our results are for 
the school-district level and thus include both children who 
ride the bus and those who do not. In general, we expect 
that this will likely underestimate the true effect on students 
who were directly affected by the change to new, lower-emis-
sion buses. We see evidence of this phenomenon when we 
compare the results of the current study with those of our 
previous panel study of bus riders in the Washington State 
Puget Sound.17 In that repeated-measures study, we found 
that students experienced a 5% to 15% reduction in the risk 
of absenteeism in the previous month and less lung inflamma-
tion when they were riding newer, lower-emission buses com-
pared with older, higher-emission buses.17 When assuming a 
binomial distribution, we see that these reductions estimated 
at the individual student level are approximately 1.25 times 
stronger than our primary attendance results when estimated 
at the school district. Further evidence of the dilution of the 
effects for individual riders comes from our findings of a 
near dose–response relationship across quartiles of estimated 
ridership levels on the buses requested for replacement in 
our attendance outcome. In fact, we observed an order of 
magnitude greater increase in attendance in districts with 
the highest versus the lowest quartile of estimated bus 
ridership, although these groups could not be statistically 
distinguished from one another. Interestingly, we did not 
observe a similar dose–response relationship by ridership 
levels for educational performance although there was some 
suggestion, but not statistically significant evidence, of 
greater reductions of ambient PM2.5 with increasing numbers 
of buses replaced. 

Importantly, the observed associations in this study tell a 
compelling and consistent story, especially for the oldest buses. 
Our overall associations, however, were often imprecise and 
not statistically different from no association. When planning 
this study, we had expected to have sufficient power to detect 
differences between selected and nonselected districts given 
associations observed among school bus riders.17 As described 
above, however, the dilution of our results across all students 
resulted in the observed associations being much smaller than 
we had anticipated based on research in only bus riders. When 
updating our power calculations with the observed associations 
in this study, we see that we had only about one tenth of the 
applications needed to detect statistically significant associa-
tions. This lack of power is an important consideration when 
interpreting findings that were not statistically significant.  
It also highlights the need for future work that includes more 
recent years of the US EPA Clean School Bus Funding Program 
to increase statistical power. 

Another potential source of bias toward the null in this 
work is our use of the ITT approach. Although districts linked 
to 35 included applications selected for funding ultimately 
did not purchase a new bus due to difficulty acquiring match-
ing funds, based on the ITT approach our analysis treated 
these applications as selected lottery applications. Similarly, 
districts linked to applications not selected for funding could 
have replaced or retrofitted buses outside of this program, but 
they were treated as unselected in our analysis. Analyzing 
the data in this way will result in a lower bound for the true 
associations between being selected to receive Clean Bus 
Rebate Funding and each of our outcomes of interest.72 We 
used an ITT approach to retain the randomized allotment of 
Clean Bus Funding, which provides much stronger evidence 
of the causal effect of school districts switching to newer, 
lower-emission, school buses. This differs importantly from 
previous studies in this area, which have relied on districts 
self-selecting bus replacements. This lack of random assign-
ment in previous studies raises the possibility that there 
were fundamental differences between the school districts 
that adopted newer, lower emission buses, or the times when 
newer buses were used, compared with districts that did not 
adopt newer buses or the times when newer buses were not 
used due to some other characteristics that are important 
to health, education, and air quality. In contrast, our design 
reduces concerns of confounding by measured or unmeasured 
school-district-related characteristics. In fact, we see that 
with respect to all key demographic characteristics evalu-
ated, there was even balance achieved between the districts 
linked to selected and unselected applications. Although we 
observed some differences in a few of our outcomes between 
the districts linked to selected and unselected applications in 
the year before the bus replacement, all of our models used 
paired data before and after the switch, thus accounting for 
any differences by school districts that were not eliminated 
by randomization (i.e., occurred due to chance alone). We 
also found that our key take-home messages were unaltered 
by adjustment for baseline outcome levels. This further bol-
sters the causal interpretation of our findings.
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An additional point of note is that our inclusion criteria 
(see Figure 2) were applied after the randomization. This 
could raise selection-bias concerns. It was not anticipated 
that this would distort the randomization, however, because 
our exclusion criteria should be unrelated to lottery selection 
status. In fact, we found no evidence that being excluded 
was related to the likelihood of being selected for funding 
(Appendix Table A5). Nonetheless, we attempted to investi-
gate the importance of this exclusion in sensitivity analyses. 
First, we found that our results were robust to even extreme 
changes in assumed values of the outcome for the districts 
linked to excluded applications (Appendix Table A4). Sec-
ond, we found that imputing data for those districts linked to 
excluded applications for missing outcome information did 
not change our results, with the one exception of our analysis 
of ED visits. For this one outcome, the overall findings flipped 
from suggesting a counterintuitive, hazardous relationship 
with being selected for new buses to the anticipated protec-
tive one, suggesting that there may have been some selection 
bias at work for this outcome. Nonetheless, the robustness 
of our other results mitigates concerns of selection bias due 
to the exclusion of applications, post-randomization for our 
attendance, educational performance, and community air 
pollution results. 

As a final note, we mention that this work only investi-
gated the replacement of older diesel school buses with new 
diesel school buses. Virtually all districts linked to selected 
applications (379 of the 380 with available data) purchased a 
new bus as opposed to installing retrofit technology (Appen-
dix Table A3). In addition, none purchased electric buses, so 
we are unable to conclude if these results would be the same 
for those replacements. Similarly, we are unable to make any 
conclusions about the sustained benefits of this program over 
time, given our focus on outcomes in the year following the 
bus replacement. Relatedly, our findings were strongest for 
the smaller number of districts with the oldest buses. Because 
the number of districts with pre-1990 and pre-2000 buses will 
continue to decrease over time, the benefits of this program 
may weaken as these oldest buses are decommissioned. In 
addition, the bus age data were only available to us as the 
average age of all replaced buses rather than the individual 
ages of each bus. Averages can be sensitive to outliers 
compared to the median, therefore it is possible there was 
exposure group misclassification in terms of model years of 
the replaced buses. Such misclassification would likely have 
made it even more challenging to accurately detect the true 
effects. 

It is also the case that entrants to the US EPA School Bus 
Rebate Program differed from the entire population of US 
school districts in terms of size and student makeup. On aver-
age, districts linked to applications to the lottery were larger, 
of higher income, and had a greater fraction of white students. 
Given that the size of a district influences the proportion of 
children who will be able to ride the new buses, our overall 
results might represent an underestimate of the effects in 
other school districts. The different demographics of districts 

linked to entrants that applied for funding also suggest that the 
program may not have benefited the most socially vulnerable 
children. Relatedly, there could be generalizability concerns 
in our extrapolation of impacts to the full US school district 
population if the entrants to the US EPA School Bus Rebate 
Program during the time period evaluated had fundamentally 
different responses to the replacement of buses than did 
other locations. Possible reasons for such differences would 
be different ages of buses, different baseline health status of 
the students, or different durations spent on the buses. When 
possible, we evaluated effect modification of our findings by 
these factors.

IMPLICATIONS OF FINDINGS

The findings in this work, which were conducted using 
a causal framework given the US EPA’s random allotment 
of funding, indicate that the US EPA’s School Bus Rebate 
Program has improved district-level student attendance, 
educational performance, and air quality in the districts that 
removed the oldest buses. Focusing on attendance alone, our 
results suggest that the total investment of $27 million by the 
US EPA for the 2012–2017 lotteries may have resulted in $350 
million of benefits per year due to reduced absenteeism alone, 
although these benefits could not be distinguished from no 
benefit. Therefore, we conclude that the US EPA’s School Bus 
Rebate Program investments to remove the oldest buses with 
the highest emissions from the fleets have positively affected 
communities. Assuming that the districts linked to applica-
tions in the lotteries studied in this report are representative 
of bus replacements throughout the nation, we estimate that 
investing funds to replace all school buses in the United 
States manufactured before 1990 could lead to an additional 
$400 million in economic benefits per year, and replacing all 
US school buses manufactured before 2000 could lead to an 
additional $1.3 billion of economic benefits per year.

DATA AVAILABILITY

Data and code pertaining to all analyses in this report are 
available at https://doi.org/10.7302/sjy5-0540. Please note 
that attendance data is masked for two states with data agree-
ments, which precluded us from sharing the data 
publicly. Additionally, the respiratory ED visit data is 
omitted from the posted data due to the data agreement for 
this health outcome.
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The QA oversight program for this study involved a com-
prehensive evaluation of the Draft Final Report for evidence 
of updated methodology, reanalysis, or clarification of data 
that was previously noted as requiring enhancement in the 
initial review by the HEI technical review committee. The 
specific details of the dates of the audit and the types of 
reviews performed are outlined below.

FINAL REMOTE AUDIT

Date: February 2024 – August 2024

Remarks: The Adar et al. study underwent an independent 
quality assurance (QA) audit conducted remotely by the Wes-
tat QA team. The audit was led by a diverse group of experts 
specializing in areas crucial to the study, including the qual-
ity of the documentation of the study methods, fidelity to the 
data analysis plan, and the accuracy and clarity of the study 
results and conclusions.

The QA oversight program was initially designed to include 
both an on-site audit to assess adherence to the study protocol 
and standard operating procedures, and a final remote audit 
to evaluate the processing of data, statistical analyses, and 
the reporting of study findings. However, due to logistical 
constraints, the on-site audit was not conducted. Instead, the 
audit team focused on a thorough remote assessment, examin-
ing the processes related to data collection, statistical analysis, 
the accuracy of data presentation, and the appropriateness of 
the study conclusions as presented in the Draft Final Report.

The Westat QA review of the Adar et al. study concentrated 
on several critical aspects:

•	 Adherence to the study protocol and the robustness of 
the documentation of study methods, including data 
processing, exposure modeling, and statistical analysis.

•	 The adequacy of addressing study assumptions and lim-
itations, such as potential confounding factors, biases, 
and the consistency of the results with the data collected.

•	 Whether the investigators’ conclusions were justified 
based on the study findings, considering any limitations 
noted during the audit.

•	 The clarity and comprehensibility of the report to ensure 
that it could be easily understood by its intended audience.

Following their review, the Westat QA audit team provided 
detailed feedback in a written report to HEI and the study 
investigators. The audit team found that the study was gener-
ally well conducted, with the final report accurately reflecting 
the study’s procedures and outcomes. However, the auditors 
provided several recommendations for improvement. These 
recommendations included

•	 Re-evaluating study power calculations using updated 
effect size estimates.

•	 Clarifying in the report when model results are nonsig-
nificant, ensuring that readers understand no association 
was detected.

•	 Specifying whether the reported sample size represents 
the number of school districts or the number of applica-
tions submitted.

•	 Increasing clarity and interpretability of report text, fig-
ures, and tables. Including defining terms like ‘dirty’ and 
‘clean’ school buses and indicating if data on the number 
of buses replaced/retrofitted were available and used in 
the analysis.

Dr. Adar and her team responded to the QA recommenda-
tions, incorporating the feedback into a revised final report 
that was subsequently reviewed by HEI and provided back to 
Westat. The Westat QA audit team attests that the final report 
accurately represents the study conducted and that the rec-
ommendations provided have been appropriately addressed. 
The final report appears to be a reliable and clear reflection of 
the research and its findings.

Daniel Chacreton, PhD, Statistician, Quality Assurance auditor

Joseph Abraham, ScD, Epidemiologist and Environmental 
Scientist, Quality Assurance auditor

David Wright, PhD, Statistician, Quality Assurance auditor

Brandon Hesgrove, PhD, Health Economist, Quality Assur-
ance auditor

Rebecca Jeffries Birch, MPH, Epidemiologist, Quality Assur-
ance auditor

Date: August 22, 2024

SUPPLEMENTARY APPENDIX ON THE HEI WEB-
SITE 

Appendix A contains five tables and one figure not included 
in the main report. It is available on the HEI website at www.
healtheffects.org/publications. 

http://www.healtheffects.org/publications
http://www.healtheffects.org/publications
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Appendix A: Supplementary Tables and Figure

Table A1. Types of School Bus Upgrades Allowed by US 
EPA School Bus Rebate Program Awardees, 2012–2017

Table A2. Number of Applications (%) Receiving US 
EPA School Bus Rebate Program Funding, by Source of 
Funding and Year

Table A3. Types of School Bus Upgrades Purchased by US 
EPA School Bus Rebate Program Awardees, 2012–2017

Table A4. Sensitivity Analysis to Evaluate the Potential 
for Selection Bias in Our Study Due to Excluded Data

Table A5. Relationship Between Lottery Status and Miss-
ingness, by Outcome Measure

Figure A1. Histogram of Applicant Average Model Year 
of Replaced Buses for Selected Applications (2012–2017)
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INTRODUCTION

Governmental regulation is essential for protecting environ-
mental quality and human health, but also typically incurs an 
economic cost. It is therefore essential to understand whether 
environmental policies result in the intended improvements. 
The area of study known as environmental accountability 
research evaluates the extent to which environmental regula-
tions have yielded improved air quality and public health. A 
major challenge in this research field is isolating changes that 
can be attributed to the policy in question from improvements 
that might be due to other unrelated regulations or long-term 
trends. This challenge is a particular concern when policies 
target numerous pollutant sources, affect large geographic 
regions, and take several years to fully implement. 

Over the past two decades, HEI has emerged as a leader 
in air pollution accountability research, contributing to 
research design, funding, study oversight, and evaluation 
of such research (see Preface). Through a series of Requests 
for Applications (RFAs*), HEI has now funded more than 20 
studies that assessed a wide variety of regulations targeting 
both point and mobile sources of air pollution. For practical 
reasons, earlier studies tended to focus on local-level actions 
that were implemented over a relatively short time frame. HEI 
later solicited research that evaluated actions with a larger 
geographical scope or that were implemented over longer 
timeframes.

In its 2018 research solicitation, RFA 18-1, “Assessing 
Improved Air Quality and Health from National, Regional, 
and Local Air Quality Actions,” HEI aimed to fund empirical 
studies to assess the health effects of air quality actions (reg-
ulatory and other air quality interventions and natural exper-

Dr. Sara D. Adar’s 3-year study, “Assessing the National Health and Edu-
cation Benefits of the EPA’s School Bus Retrofit and Replacement Program: 
A Randomized Controlled Trial Design,” began in January 2020. Total ex-
penditures were $545,277. The draft Investigators’ Report from Adar and 
colleagues was received for review in April 2023. A revised report, received 
in September 2023, was accepted for publication in October 2023. During 
the review process, the HEI Review Committee and the investigators had 
the opportunity to exchange comments and clarify issues in both the In-
vestigators’ Report and the Review Committee’s Commentary. Dr. Adar is 
a member of the HEI Review Committee and has been recused from all 
discussions of the report.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, 
it may not reflect the views of these parties, and no endorsements by them 
should be inferred. 

* A list of abbreviations and other terms appears at the end of this volume.

iments) or to develop methods required for, and specifically 
suited to, conducting such research and make them accessible 
and available to other researchers. Areas of interest included 
national- or regional-scale regulatory actions implemented 
over multiple years, local actions targeted at improving air 
quality in urban areas with well-documented air quality prob-
lems, and regulatory programs to improve air quality around 
major ports and transportation hubs and corridors.

In response, Adar and colleagues proposed to assess the 
effects of school bus retrofit and replacement funding oppor-
tunities as part of the United States Environmental Protection 
Agency’s (US EPA’s) National Clean Diesel Rebate Program on 
student health and educational performance. To facilitate the 
transition of school districts to lower-emitting school buses, 
the US EPA funded fleet owners to replace or retrofit old, 
higher-emission, diesel-powered school buses. The program 
started with a pilot in 2012, and school bus replacement 
programs have continued in various forms to date. A random 
lottery approach is used to allocate the funds. Dr. Adar and 
colleagues planned to take advantage of the randomized 
allocation of funding to evaluate the effect of the program on 
school attendance and educational performance. They later 
added aims on emergency department visits for respiratory 
causes and community air pollution levels at the request of 
HEI’s Research Committee.

The HEI Research Committee recommended the proposal 
by Adar and colleagues for funding due to its strong study 
design with testable hypotheses. The Committee liked that 
the study would evaluate a national program with policy 
relevance using a clearly defined and randomized interven-
tion and well-defined outcomes. They also appreciated the 
approach of using an intention-to-treat analysis (explained 
below) that leveraged randomized selection of school districts 
for funding, which was a unique opportunity in environ-
mental epidemiology. The Research Committee also liked 
the inclusion of student absenteeism as a potential mediator 
of educational performance and the sensitivity analyses 
proposed by the investigators to evaluate some underlying 
assumptions of the study.

This Commentary provides the HEI Review Committee’s 
evaluation of the study. It is intended to aid the sponsors of 
HEI and the public by highlighting both the strengths and lim-
itations of the study and by placing the Investigators’ Report 
into scientific and regulatory context.
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SCIENTIFIC AND REGULATORY BACKGROUND

SCHOOL BUS EXPERIENCES OF STUDENTS IN THE 
UNITED STATES

Every day, school buses transport 20 to 25 million chil-
dren, including 50% of all pre-high school students and 60% 
of low-income students, to and from primary and secondary 
schools in the United States.1–3 Nationwide, in 2019 and 2020, 
students attending traditional public schools who rode school 
buses rode about 25 minutes each way to school, with 75% of 
students riding school buses for less than 30 minutes.4 How-
ever, the experience of riding the school bus varies geographi-
cally, by race, and by family income, with rural and minority 
children typically experiencing longer bus rides. A survey 
of 1,194 elementary school principals in five states (Arkan-
sas, Georgia, New Mexico, Pennsylvania, and Washington) 
reported that students who attended rural elementary schools 
were more likely to be eligible to ride school buses than were 
students attending urban schools.5 Compared with students 
who attended suburban schools, those attending rural schools 
also had longer bus rides — lasting 30 minutes or more each 
way with rougher ride conditions — than suburban school 
students. One of the most studied cities for student transpor-
tation is New York City, where typical lengths of school bus 
rides were in line with national averages.6 In New York City, 
public school students who rode school buses were more 
likely to be Black or Hispanic and to attend choice or charter 
schools (thus traveling farther to school). They had dispro-
portionately longer travel times to school compared with 
students who used public transportation or arranged private 
transportation.6,7 With many children spending at least an 
hour per day on school buses, their exposure to emissions 
from the school buses, particularly those with old, highly 
emitting diesel engines, and to traffic emissions generally, is 
of concern.

DIESEL EMISSIONS FROM SCHOOL BUSES

About 89% of the half million school buses currently in 
use are powered by diesel fuel.8,9 Increased concentrations of 
air pollutants — including fine particulate matter ≤2.5 µm in 
aerodynamic diameter (PM2.5), black carbon, ultrafine parti-
cles, and carbon monoxide (CO) — from diesel exhaust have 
been reported near idling school buses during student pickup 
and drop-off and inside the buses themselves, including in 
previous research funded by HEI.10,11 Diesel exhaust has been 
classified by the International Agency for Research on Cancer 
as a known human carcinogen,12 and exposure has been 
associated with increased risks of adverse respiratory symp-
toms, hospitalizations related to heart and lung illnesses, and 
premature death.13

To reduce these emissions, the US EPA implemented 
substantially more stringent emissions certification standards 
for school bus and other engines starting with model year 
1985 for CO and starting with model year 1990 for PM and 

nitrogen oxides (NOx) (Commentary Figure 1). Following on 
earlier reductions, the most recent emissions requirements of 
2007 and 2010 have substantially improved emissions of PM 
and NOx and alleviated some of the associated health con-
cerns.14–17 These latest improvements were possible because 
of a combination of new technologies and fuel standards. For 
example, diesel particulate filters and selective catalytic con-
verters became standard in new diesel engines in 2007 and 
2010, respectively. Supporting the effectiveness of these tech-
nologies and also reducing PM formation on its own, the US 
EPA implemented fuel requirements to reduce PM emissions 
and to protect catalytic converters, including the phase in of 
ultra-low sulfur diesel starting in 2006.18 Most states have also 
implemented rules to address air quality issues associated 
with idling of school buses and other vehicles.19

As a result of the decreases in allowable emissions from 
new diesel engines over time, newer model year diesel 
engines used in school buses and other vehicles have substan-
tially lower emissions of air pollutants such as CO, PM, and 
NOx than do older diesel engines. However, many old school 
buses remain on the road. School buses are currently retired 
at an age of about 15 years, and in 2023, the average age of 
school bus fleets was just under 9 years with 67% of diesel 
school buses having the newest model year 2010 or newer 
technologies.9,20,21 Overall, about 1% of the school bus fleet 
in the early 2020s were pre-1990 model years.22 As of 2022, 
about 3% of buses were 1999 and older model years, and at 
least 8% of buses were of unknown age.23

Several studies have demonstrated decreased air pollutant 
emissions from school buses with new technologies. Tests of 

Commentary Figure 1. Changes in US emissions standards for 
CO, PM, and NOx from heavy-duty highway compression ignition 
engines (as used in school buses) over time. (Data from US EPA 
2016.)
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new school buses that use lower-emitting diesel technol-
ogies (e.g., diesel particulate filters and selective catalytic 
conversion), alternative fuels (e.g., condensed natural gas 
and liquefied petroleum gas), and electric power have 
shown reduced emissions of NOx compared with older die-
sel buses.24 Additionally, retrofitting older buses with newer 
emissions control technologies such as diesel oxidation 
catalysts or crankcase filter systems can reduce exhaust (i.e., 
tailpipe and engine) emissions in some cases.10,25 Calibrating 
the emissions control technology and testing the same bus 
before and after the retrofit were both important to see these 
effects. Although exhaust emissions have decreased with 
new technologies and power sources, in-use real-world 
emissions continue to be higher than laboratory-based emis-
sions certification standards.24

EFFECT OF REDUCING SCHOOL BUS EMISSIONS ON 
CHILDREN

The relationship between reduced emissions and changes 
in children’s exposures has been less clear. A study in Wash-
ington (by the authors of the current study) found lower fine 
and ultrafine particles on school buses after diesel oxidation 
catalysts, closed crankcase ventilation systems, and ultra-low 
sulfur diesel fuel were adopted.26 However, in a separate 
study of a small sample of diesel-powered school buses in 
the United States, retrofitting buses with a diesel oxidation 
catalyst, a crankcase filtration system, or both resulted in 
substantially reduced exhaust concentrations of ultrafine 
particles, black carbon, and PM2.5 during idling but did not 
reduce in-cabin concentrations of the measured pollutants.10

Studies of student health and educational performance 
are starting to provide evidence that school bus rides affect 
students’ educational experience and that reducing school 
bus emissions can improve the educational performance 
and school attendance rates of students. In a study of school 
bus ridership in New York City, bus rides longer than 45 
minutes were associated with decreased school attendance 
and higher probability of chronic absenteeism relative to 
shorter bus rides.6 School bus emissions decreased, and 
English and math test scores improved after school bus 
retrofits in studies in Georgia.27,28 Studies in Washington 
state (including by the investigators of the current study) 
reported improvements in student respiratory health fol-
lowing the implementation of lower-emitting school bus 
technologies and fuels, especially among patients with 
persistent asthma.26,29 A recent nationwide study in the 
United States projected that replacing diesel model year 
2005 school buses with diesel model year 2010 school 
buses could result in reduced attributable mortality and 
new childhood asthma cases and that an estimated $84,200 
of health and climate benefits would be achieved for each 
diesel school bus replaced with an electric school bus.30 

Those benefits would be mainly realized in large cities, 
although there would also be some benefits in other areas.

REGULATORY PROGRAMS FOR LOWER-EMITTING 
SCHOOL BUSES

To reduce the potential effects of diesel exhaust on children, 
the US EPA provides funds to support the replacement or ret-
rofit of older, higher-emission diesel school buses by owners of 
school bus fleets through various rebate and grant programs. 
The school bus retrofit and replacement funding opportunities 
evaluated in the current study were part of the National Clean 
Diesel Rebate Program, which was authorized by the Diesel 
Emissions Reduction Act (DERA) of 2010, and provided rebates 
for the replacement of 2006 and older model year school buses 
with new models of diesel, gasoline, propane, condensed nat-
ural gas, or electric school buses. Between 2012 and 2017, the 
US EPA awarded over $27 million to replace or retrofit school 
buses, and since then, the program has continued for a total of 
more than $66 million either disbursed or committed to school 
bus replacement as of April 2024.31

In recent years, the US EPA has run other clean school bus 
programs concurrently with the DERA School Bus Rebates. 
Those programs include the American Rescue Plan (ARP) 
Electric School Bus Rebates for electric school buses for 
underserved school districts and the Bipartisan Infrastructure 
Law (BIL) rebate and grant programs to replace old, high-
er-emitting diesel buses, with priority to fleets that serve dis-
advantaged communities. In most cases, the US EPA’s school 
bus replacement programs require proof of new school bus 
purchases and scrappage of the old school buses, although 
school buses from model years 2011 that are fueled by diesel, 
gasoline, propane, or condensed natural gas can alternatively 
be sold or donated when using BIL funding to purchase new 
battery-electric school buses if a fleet has no diesel school 
buses of 2010 or older model years.

Selection of applicants for funding in the National Clean 
Diesel Rebate Program is determined via various lottery meth-
ods, with funding priority set by random selection. Starting in 
2014, some US EPA regions (each of which includes several 
states and territories) contributed additional funding to the 
rebate program to allow the selection of additional applicants 
from those regions after the US EPA headquarter funds were 
allocated. About one third of applicants selected for funding 
in lottery years 2012 and 2014–2017 (there was no lottery in 
2013) were allocated US EPA regional funds. The ARP and 
BIL lotteries have more complex procedures to target the 
allocation of funding, but, at the time of funding the current 
study, only the DERA program was in place.

The current study by Adar and colleagues took advantage of 
the randomized allocation of DERA funds to evaluate whether 
this program to replace old diesel school buses improved 
student health (based on school attendance and respiratory 
emergency department visits for school-aged children) and 
educational performance (based on standardized test scores), 
and community air quality levels, all at the school district 
level. Their findings inform the implementation of programs 
to replace the most highly polluting old school buses.
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SUMMARY OF THE STUDY

STUDY OBJECTIVES

Adar and colleagues studied the effects of being selected 
for the US EPA’s school bus retrofit and replacement funding 
on school attendance; standardized test scores for reading, 
writing, and related skills (i.e., reading/language arts, hereafter 
referred to as reading) and math; emergency department visits 
for respiratory causes; and community air pollution levels. They 
evaluated whether these outcomes had improved more in school 
districts that were selected for funding in the rebate funding 
lottery compared with those that had also applied for funding 
but were not selected. Specific aims of the study were as follows:

1.	 To quantify the effects of the rebate program funding to 
replace old, higher emission diesel school buses with 
lower-emitting, upgraded buses on (a) school attendance 
rates for all students and (b) emergency department visit 
rates for respiratory causes in school-aged Medicaid 
beneficiaries

2.	 To quantify the effects of the program on standardized 
test scores

3.	 To quantify the effects of the program on community- 
level, outdoor air quality represented by PM2.5

The investigators used a randomized controlled design 
that took advantage of the randomized allocation of funding 
for school bus replacements and retrofits. They compared 
the outcomes before and after each lottery between school 
districts that were selected to receive the funding and other 
school districts that were not, regardless of which (if any) 
school districts replaced their buses with new models (see 
Sidebar description of intention-to-treat analysis). They used 
data at the school district level starting in the 2012–2013 
school year — before the first randomized allocation of fund-
ing in the 2012 pilot — and ending in the 2018–2019 school 
year after funding from the 2017 lottery had been awarded.

STUDY DESIGN AND METHODS

Design and Approach

This study implemented a quasi-experimental design 
across school districts that applied for funding to replace 
their old diesel school buses. They used a regression model-
ing approach to compare outcomes in the school year during 
which applicants applied for funding to outcomes in the year 
after the funding was awarded via lottery. Applicants that 
were selected for funding were notified of their selection at 
the end of the school year and were expected to replace or 
retrofit their buses in the following summer. For example, 
2012 lottery applicants were notified of the results at the end 
of the 2012–2013 school year and should have replaced their 
buses in the summer of 2013. Thus, the years that were ana-
lyzed for school districts that entered the 2012 lottery were 

the 2012–2013 school year (before) and the 2013–2014 school 
year (after). Replacement buses were required to be current 
models for that year (e.g., model year 2012 or later for the 
lottery that took place in 2012). Proof of school bus purchase 
and scrappage of the old school bus were required to receive 
the allocated funds. (See Commentary Figure 2.)

Study Population

The study population was assembled based on the dataset 
of individual school districts that had reporting requirements 
for school attendance and standardized test scores and 
applied for funding in 2012 and 2014–2017; there was no 
lottery in 2013. Therefore, applications were excluded from 
analyses if they (1) represented more than one school district; 
(2) represented private, nontraditional, or tribal schools; (3) 
were located outside of the continental United States; or (4) 
had incomplete information related to the school district that 
the applicant represented.

The investigators obtained the following information on 
the school districts represented by the lottery applicants via 
a Freedom of Information Act request to the US EPA: what 
school districts were served by applicants, how many school 
buses the applicants intended to replace, and whether the 
applicant was selected for funding through the program. For 
those applicants that were selected for funding, they also 
obtained information on characteristics of original buses, 
whether those were replaced or retrofitted, and confirmation 
of the replacements or retrofits.

Outcomes

District-level absenteeism data were obtained from the 
state-level departments of education, and data on school 
characteristics were obtained from the US Department of 
Education. Information on the numbers of respiratory-caused 
emergency department visits (i.e., asthma, upper respiratory 

Commentary Figure 2. Conceptual framework of the study to 
assess a policy that provided funding to replace old school 
buses via a lottery mechanism. (Adapted from Investigators’ 
Report Figure 1.)
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infections, or pneumonia) among children aged 5–18 who 
received health coverage through the low-income Medicaid 
program were obtained for all zip codes intersecting appli-
cant school districts. Standardized test score data for math 
and reading for children in grades 3–8 were acquired from 
a harmonized national dataset of student educational perfor-
mance (the Stanford Education Data Archive) in December 
2023. At the time of the study, standardized test scores were 
only available for school years spanning 2012–2017, so the 
final lottery year was not included in standardized test score 
analyses. PM2.5 data were obtained from publicly available 
concentration surfaces that were modeled by combining 
chemical transport model predictions, ground measurements, 
and satellite observations on a 0.01-degree grid (roughly 1 × 
1 km) and assigned to each school district for September 1 to 
May 31 of each school year that was analyzed.

Intention-to-Treat Analysis

The investigators took advantage of the randomized allo-
cation of funding to conduct a study similar to a randomized 
controlled study (see Sidebar), where the treatment group 
was school districts with applications that were randomly 
selected for funding to reimburse the purchase of one or more 
new, lower-emission school buses and the control group was 

school districts with applications that were not randomly 
selected for funding.

Of the school districts that entered the funding lottery, 
some school districts that were selected for funding did not 
receive the funding and some school districts that were not 
selected for funding might have purchased new school buses 
using other funding sources. Therefore, an alternative strategy 
for analysis could have been to test the observed differences 
between districts based on whether they did replace their 
older, more highly emitting school buses with new school 
buses (see Sidebar description of intention-to-treat and alter-
native analyses). However, the investigators decided to use 
a modified intention-to-treat analysis (with some school dis-
tricts excluded as indicated below) instead of an alternative 
approach to maintain randomization and to analyze the data 
in the least biased way possible. 

Statistical Analyses

The main models were a modified intention-to-treat analy-
sis where the investigators restricted their population to only 
those school districts with complete data on the outcomes of 
interest. The investigators produced multivariate regression 
models of student educational performance and health out-
comes as a function of whether the applicant was selected for 

Sidebar: Principles of the Intention-to-Treat Approach

The study by Adar and colleagues mimics a randomized con-
trolled trial using intention-to-treat analysis to assess the effects 
of a school bus replacement and retrofit program. Intention-to-
treat analysis is a method used in the medical setting to evaluate 
whether individual participants or groups of participants expe-
rienced a treatment effect in a placebo-controlled randomized 
clinical trial based on the randomly assigned treatment (e.g., a 
new medication, therapy, or intervention) assignment, ignoring 
whether or not the assigned treatment was followed and com-
pleted.32,33 Analysts compare outcomes in the treatment group 
who were assigned to receive the treatment versus the placebo 
or control group who were assigned to not receive the treatment, 
regardless of the degree of noncompliance among participants 
in the trial. Intention-to-treat generally includes all participants 
that were randomized in the final analysis, even if their inclusion 
were later found to violate the study protocol, because excluding 
participants after randomization for any reason could poten-
tially distort the randomization mechanism and bias the results, 
depending on the amount of exclusion and whether there were 
any systematic differences between the participants that were 
and were not excluded.34 Intention-to-treat analysis has the 
benefit of retaining randomization, so it will not be subject to 
bias due to confounding. However, if the treatment assignments 

are not followed, the treated and control groups can be too 
similar to one another. Although the intention-to-treat approach 
will incorporate error if individuals or groups did not follow their 
random treatment assignment, the results of this misclassifica-
tion will bias the results toward no association, and thus, the 
result will be a conservative estimate of the true effects of the 
treatment on the outcomes under study. As a result, intention-
to-treat analysis might underestimate the effect of a treatment 
and can also limit the statistical power.

Some alternative approaches to intention-to-treat are to set the 
treatment groups based on the actual – instead of assigned – 
treatment of participants or to restrict the study population to 
only those who follow their randomized assignments.32 In clinical 
trials, not all participants who are randomized to the treatment 
group actually follow and complete the intended treatment 
protocol due to side effects or other factors. At the same time, 
participants in the control group might make changes that affect 
their health or even adopt aspects of the treatment protocol 
(e.g., in a dietary intervention). Under perfect compliance,  
intention-to-treat and these alternative approaches will be the 
same, but if there is noncompliance the alternative approaches 
might differ due to confounding or selection bias. 
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funding and other factors. Educational performance, school 
attendance, and air quality outcomes were modeled using 
linear models. Emergency department visits were modeled 
as a Poisson function and adjusted for population size. Each 
primary model was adjusted for the outcome values for the 
school year of the lottery (the before year), which year’s lot-
tery was entered, whether the applicant entered the lottery 
multiple times in the same year (allowed for some school 
districts with large fleets), and the US EPA region (because 
supplemental funding from some regions increased the 
chance of being selected for funding). Because school districts 
were not limited to entering the lottery in only 1 year, the 
investigators used general estimating equations with robust 
standard errors clustered at the state level to account for any 
potential correlation in the data. 

Supplemental and Sensitivity Analyses

The investigators noted that the analyses at the school 
district level assumed that all children in the school district 
are affected by the intervention, but not all children in a dis-
trict attend the affected schools, not all children ride school 
buses, and not all school buses in the district were replaced or 
retrofitted. They also noted that modeling all school districts 
together will estimate a common effect for replacing any old 
school buses, yet not all old school buses are equivalent. To 
address some of these differences in the treatment, they con-
ducted analyses that were stratified by quartiles of the fraction 
of children who were likely to ride the buses requested for 
replacement and by the model year of replaced buses (pre-
1990, 1990–1999, and 2000 or newer).

The investigators conducted many sensitivity analyses of 
such factors as properties of the school districts, accounting 
for prelottery levels of the outcome measures, and inclusion 
of observations that had been excluded due to missingness 
estimated using a multiple imputation approach.35 They also 
conducted mediation analyses to assess whether respiratory 
emergency department visits mediated (i.e., were an interme-
diate causal step between) the effect of selection for funding 
to replace school buses on school attendance and educational 
performance.

Finally, they estimated the overall contribution of the 
program by multiplying the total number of students in 
selected school districts in the school year of the lottery by 
the observed primary effect estimate, and by 180 days in the 
school year, and extrapolated the findings to the nationwide 
population of school children and old school buses.

SUMMARY OF KEY RESULTS

Characteristics of the School Districts

The US EPA received 3,153 applications for funding 
to replace or retrofit school buses in the years 2012 and 
2014–2017. Interest in new school buses substantially 
exceeded the available funding; therefore, only 14% of school 

districts that applied were selected for funding. Of the full set 
of applications, the analyses in the current study included 
406 applications that were selected for funding and 2,613 that 
were not. The remaining 4% of applications were excluded 
based on the predetermined exclusion criteria. Standardized 
test score data were unavailable for about 20% of school 
districts in the study because of low student participation in 
standardized tests in some school districts and differences 
in test administration. Lottery status was not predictive of 
missingness for any of the outcomes considered.

Of those school districts that applied for the funding 
lottery, the proportion of each school district characteristic 
(e.g., size, demographics, urbanicity, and free and reduced-
price lunch eligibility [a proxy for family income]), number 
of buses requested, school attendance rates, and standardized 
test scores in the years they entered the funding lottery were 
similar regardless of whether they were selected for funding. 
However, prelottery emergency department visits and PM2.5 

concentrations were slightly lower in school districts that 
were allocated funding than in those that were not. Compared 
with all 18,893 school districts in the United States, school 
districts that applied for the lottery funding were larger, had 
a higher proportion of students that were white, had a lower 
proportion of low-income families, and were less urban. 
These comparisons suggest that the results of the analyses 
have internal validity (i.e., the selected and not selected dis-
tricts were similar) but that they cannot be easily generalized 
to all school districts.

Buses Replaced Following the School Bus Rebate 
Lotteries

Compliance with the intervention was high, with 371 of 
the included districts that were selected for funding (91%) 
providing proof of purchase of a new school bus and scrap-
page of the old school bus to receive the funding. Information 
on the type of school bus that was purchased was available for 
380 of all school districts selected for funding through the pro-
gram. Almost all of those school districts replaced old diesel 
buses with new, lower-emitting diesel buses (93.2%), with a 
minority choosing buses powered by other fossil fuels (6.6%). 
Only one school district (0.3%) installed retrofit diesel oxida-
tion catalyst and closed crankcase ventilation technology. No 
school district purchased electric buses; electric school buses 
were largely unavailable during the study period. Information 
on school bus purchasing behaviors was not available for the 
school districts that were selected for funding but did not 
receive the funding or for the school districts that were not 
selected for funding.

Effects of the Intervention on School Attendance and 
Standardized Test Scores

When analyses were restricted to school districts that 
intended to replace the oldest, pre-1990 school buses, 
selection of an application for funding was associated with 
improved district-level school attendance and standardized 
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test scores for both reading and math (Commentary Figure 
3). Results for all school buses and for slightly newer buses 
(1990–1999 model year) showed the same trends, although 
these were not statistically significant. Results for the newest 
school buses that were intended to be replaced (model year 
2000 or newer) did not show any effects on school attendance 
or standardized test scores.

The investigators reported that the effects on test scores 
were comparable to those of typical interventions to reduce 
class size. Additionally, they estimated that the overall 
magnitude of the effects was equivalent to about 350,000 
additional student-days of school attendance, presumed to be 
because of improved health, in the school districts that were 
selected for funding, which they extrapolated to 1.3 million 
additional student-days if all pre-2000 model year school 
buses in the United States were replaced.

In secondary analyses, increased fractions of students 
riding buses did not appear to influence the association 
between being selected for funding and standardized test 
scores, although it might have influenced the association 
between being selected for funding and school attendance. 
Also, school attendance did not appear to mediate the 
overall relationship between being selected for funding and 
educational performance. In general, the sensitivity analyses 
with different adjustments to the epidemiological models and 
assumptions around the treatment of missing data corrobo-
rated the main results.

Effects of the Intervention on PM Concentrations and 
Emergency Department Visits 

The investigators did not find an effect of being selected 
for funding on numbers of emergency department visits for 
respiratory causes in children, but these analyses were highly 
sensitive to model assumptions. They did find a sizable effect 
on community-level, outdoor air pollution — a 1-µg/m3 reduc-
tion in PM2.5 concentrations — in the year after the lottery in 
those districts that were selected for funding to replace the 
oldest (pre-1990) school buses. The PM2.5 results were robust 
across many different specifications of the model (e.g., using 
the change in PM2.5 concentration as the dependent variable 
instead of the PM2.5 concentration itself) and under numerous 
sensitivity analyses (see above), and no alternative explana-
tion for the unexpectedly large magnitude of the result was 
found. 

HEI REVIEW COMMITTEE EVALUATION

In its independent evaluation of the study, the Review 
Committee appreciated that Dr. Adar and colleagues brought 
together disparate datasets to conduct a novel and useful 
accountability study of a program to allocate funding for 
replacement of old diesel school buses and presented the 
results in a clearly written report. They agreed with the inves-
tigators that being selected for funding appeared to improve 

student educational performance and school attendance, 
especially for pre-1990 school buses, and that the results for 
emergency department visits were less clear. Additionally, 
the Committee and investigators were not able to explain 
the large observed reductions in community-level, outdoor 
air pollution that were robust to many sensitivity analyses, 
because it was not clear how changing out a relatively small 
number of school buses could affect air quality in a school 
district by so much. The Committee thought that the main 
results for school attendance and standardized test scores 
were well supported by the evidence.

INTENTION-TO-TREAT AT SCHOOL DISTRICT LEVEL

The Review Committee appreciated the strong study 
design to test hypotheses diligently and the extensive supple-
mental analyses, all at the level of school districts. Leveraging 
a randomized funding lottery to mimic a randomized control 
trial and using a modified intention-to-treat approach (see 

Commentary Figure 3. Effects of selection for funding to replace 
or retrofit school buses, stratified by school bus model year, on 
school attendance, emergency department visits, standardized 
test scores for reading, and PM2.5 concentrations. Changes in 
standardized test scores for math (not shown) were similar to 
those for reading, but with a slightly smaller magnitude of effect.
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Sidebar) to analyze the data are novel in this context. Specif-
ically, the Committee liked the approach to compare school 
districts based on whether they were randomly selected for 
funding, regardless of whether it was known how (or whether) 
they chose to replace or retrofit school buses, similar to how 
patients are assigned treatments and analyzed in clinical stud-
ies. This approach provides an unbiased estimate of the effect 
of the program and does not rely on additional information 
(mostly unavailable) on the school buses purchased in indi-
vidual school districts and school bus ridership of individual 
students. Additionally, detailed supplemental analyses (e.g., 
related to how many children potentially rode the affected 
school buses) and sensitivity analyses were consistent with 
the main results, indicating that the overall conclusions were 
robust.

The Committee agreed with the investigators that con-
ducting analyses at the school district level introduces some 
limitations of an ecological analysis, which typically is 
conducted on data aggregated to groups of people (e.g., all 
students living within a zip code or school district or town). 
For example, not all children in a school district will ride 
buses (or more specifically, buses that have been replaced or 
retrofitted), and not all children will attend the schools that 
received new buses (because most districts have multiple 
schools and not all of them will receive new buses). However, 
the Committee emphasized that this does not invalidate the 
approach for measuring the effectiveness of the intervention 
on a population level and that the investigators have rightly 
recognized these limitations and attempted to address them 
where possible.

DEVIATIONS FROM RANDOMIZATION AND MISSING 
DATA

Post-Randomization Exclusion

The Review Committee and investigators noted that some 
exclusions of applications in the modified intention-to-treat 
analysis were made after the lottery randomization process. 
For example, some applications were excluded from the 
analyses because the school districts were not located in the 
continental United States or because there was incomplete 
information available on the school districts. Although the 
post-randomization exclusions were small (only 4% of school 
districts) and not related to whether the school districts were 
selected for funding, this modification of the intention-to-treat 
analysis might introduce selection bias if the exclusions were 
related to any of the outcomes.34 The Committee appreciated 
that the investigators conducted sensitivity analyses to par-
tially address whether post-randomization exclusions might 
have affected the results.

In particular, the investigators adjusted each model for 
prelottery levels of other outcomes considered in the study. 
They also replaced all excluded data with extreme values to 
confirm the stability of their findings to their exclusions due 
to missing data. They reported that the results were robust 

to post-randomization exclusion for school attendance, 
standardized test scores, and community air pollution level. 
However, the results for respiratory emergency department 
visits were not robust to the sensitivity analyses, suggesting 
that the findings related to emergency department visits might 
have been affected by changes in demographics over time, 
post-randomization exclusion due to missingness of data, or 
insufficient power to detect small effects with the available 
data. The Committee overall thought that the sensitivity anal-
yses strengthened the main conclusions of the study.

Nonuniform Allocation of Funding

There were also some deviations from uniform random 
selection in the lottery itself, where some applicants had a 
higher likelihood of being selected for funding. Those devi-
ations included the availability of extra funding in some US 
EPA regions and the option for applicants with large fleets 
to submit multiple applications. The investigators used 
fixed effects in their regression models to account for these 
differences among regions and applicants, and they also used 
general estimating equations with robust standard errors clus-
tered at the state level to account for any potential correlation 
in the data. The Review Committee agreed that the analyses 
were sufficient to account for differences in probability of 
selection because of nonuniform allocation of funding.

Treatment of Missing Data

Separately from randomization of the allocation of funding, 
missing data on any variable in the models could theoretically 
have affected the results because the main models were based 
on complete-case data. The Review Committee noted that there 
were some baseline differences between the selected and unse-
lected lottery applicants that might still be important. They 
appreciated that the investigators had confirmed that there 
was no association of missingness for any of the outcomes 
with lottery status and that the investigators reran all models 
after using multiple imputation together with Rubin’s rule for 
missing outcome variables.35 All findings except for emergency 
department visits were robust to accounting for missingness 
using multiple imputation. The Committee appreciated the 
analyses with imputation because these results would likely 
continue to be valid if the missing data were random, even if 
the complete-case analysis were biased.

Although the Committee would have preferred that miss-
ing data due to incomplete information on the randomized 
school districts and other causes could have been avoided, it 
appreciated the investigators' efforts to evaluate the potential 
impact of deviations from randomization and missing data.

FINDINGS AND INTERPRETATION 

The investigators presented interesting and useful find-
ings, including that the greatest improvements in school 
attendance and standardized test scores were associated with 
the replacement of the oldest (pre-1990) diesel school buses. 
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Based on these findings, the Review Committee concurred 
with the investigators that the program had positive effects on 
students’ school attendance and standardized test scores. The 
Review Committee was puzzled by some of the results, espe-
cially for emergency department visits, where the effect was 
opposite (but not statistically significant) of the hypothesized 
direction and for community-level, outdoor PM2.5 concen-
trations, where the 1-µg/m3 reduction was much larger than 
expected and it was not clear how changing out a relatively 
small number of school buses could affect air quality in a school 
district by that much, given that typical PM2.5 concentrations in 
the United States today are only about 8 µg/m3. However, it is 
possible that students experienced lower pollution exposures 
while traveling on the buses, thereby affecting their school 
attendance and standardized test scores. The Committee 
thought that the interpretation of those results could benefit 
from further exploration.

The investigators also presented an interesting extrapo-
lation of the potential benefits of replacing all school buses 
in the entire continental United States. Although the Review 
Committee thought this analysis was useful and agreed with 
the investigators that it does not account for sustained benefit 
over time, they thought it perhaps overestimated the potential 
annual benefits. First, school districts that did not enter the 
lottery might be less likely to replace their current school 
buses, even if funding becomes more widely available. Sec-
ond, other differences between school districts that applied 
and those that did not apply for the lottery might mean that 
the results for the study population are not representative 
of most school districts, especially those that experience 
environmental and social justice issues and were underrepre-
sented in the lottery applications.

The US EPA continues to fund rebate and grant programs 
for the purchase of lower-emitting school buses and motivates 
those programs in part with the benefits reported in other 
publications resulting from the current study.36,37 Recently, 
electric buses have become more readily available and have 
been prioritized in the US EPA's programs to fund purchases 
of new school buses. At the same time, the US EPA has started 
to give preference to applicants in underserved districts when 
allocating funding.38,39 Additionally, after the end of the study 
period, the COVID-19 pandemic disrupted healthcare and 
education, with reduced student school attendance and edu-
cational performance compared with before the pandemic.40,41 
As a result of those changes, the incremental benefits of 
programs to replace old school buses might change in the 
future. It would be valuable to update the analysis of clean 
school bus programs in 5 to 10 years to evaluate the benefits 
of replacing diminishing numbers of the oldest school buses. 
Additional future benefits are expected when school buses in 
today’s fleet are replaced with the newest generation of diesel 
school buses, with school buses operating on other fuels, or 
with electric school buses.

SUMMARY AND CONCLUSIONS

Dr. Adar and colleagues conducted a thorough account-
ability study of the US EPA’s School Bus Retrofit and Replace-
ment Program under DERA that was administered via a lottery 
mechanism over the period of 2012 and 2014–2017. They 
linked data on school attendance, reading and math standard-
ized test scores, emergency department visits, and commu-
nity-level, outdoor PM2.5 concentrations to compare student 
outcomes in school districts that were selected for funding 
to school districts that were not selected for funding. They 
reported that student educational performance and school 
attendance increased more in districts that were selected for 
funding than in districts that applied for funding but were not 
selected, with the highest improvements in student educa-
tional performance observed for the school districts that were 
selected for funding to replace pre-1990 school buses with 
new school buses. Improvements in community air quality 
were found, although the magnitude of the effect suggests the 
need for further research to understand their implications. 
Results for effects on student emergency department visits 
were inconsistent and need further research.

Key strengths of the study were the novel imitation of a 
randomized controlled trial through the application of a mod-
ified intention-to-treat approach to analyze the effect of fund-
ing being made available for new school buses, the clearly 
stated hypotheses, the combination of disparate datasets, and 
the many sensitivity analyses to evaluate factors that might 
have affected the statistical analyses or the effectiveness of the 
intervention (e.g., replacing buses versus retrofitting diesel 
engines and the fraction of students who rode school buses 
in different school districts). The Committee noted some lim-
itations, in particular some post-randomization exclusions. 
However, the investigators demonstrated that the results were 
reasonably robust. Thus, the Committee concurred with the 
investigators that remaining uncertainties were unlikely to 
change the overall results substantially regarding the effec-
tiveness of the program to replace old diesel school buses 
with lower-emitting school buses from model years that were 
new at the time of the lotteries.

Results of the current study provide evidence of benefits of 
funding for school bus replacement programs by federal and 
state agencies.36,37,38 Additional focus on disadvantaged school 
districts and the adoption of new technologies (e.g., electric 
buses) is expected to reduce emissions from the oldest school 
buses with the highest emissions. Therefore, it would be 
valuable to update the analyses in 5–10 years to evaluate the 
effects of programs to replace more of the older diesel school 
buses with newer models and newer technologies, including 
those powered by lower-emitting diesel, other fossil fuels, 
and electricity. This work will be important to support the 
health and educational performance of schoolchildren and 
communities.
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ABBREVIATIONS AND OTHER TERMS

	 CI	 confidence interval

	 CHIP	 Children’s Health Insurance Program

	 ED	 emergency department

	 ICD	 International Classification of Diseases

	 ITT	 intention-to-treat

	 PM	 particulate matter

	 PM2.5	 particulate matter ≤2.5 µm in aerodynamic diameter

	 pp	 percentage point

	 QA	 quality assurance

	 RFA	 Request for Applications

	 RLA	 reading and language arts

	 SD	 standard deviation 

	 SEDA	 Stanford Education Data Archive

	 US EPA	 United States Environmental Protection Agency
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